
運動方程式から導かれる関係 

で積分する 

t

最初と最後の 
エネルギーと仕事の関係式 

単位時間あたりの 
仕事とエネルギーの関係式 

エネルギー方程式 

単位時間あたりの変位をかけた 

最初から最後まで時間に対して和を取る 

仕事とエネルギーの関係 

v =
dx

dt

mv
dv

dt
= F

dx

dt

d

dt

1

2
mv2æ

èç
ö

ø÷
dt

t1

t2

ò = F
dx

dt
t1

t2

ò dt

運動方程式 

力積と運動量の関係 

モーメントと角運動量の関係 

運動エネルギー 
仕事 

運動量 
力積 

運動方程式 ma = F

で積分 t

で微分 t

で積分 x

で微分 x

力の距離積分  力の時間積分 



仕事とエネルギーの関係 

dv
m F

dt


運動方程式 

を、 

を代入すると、運動方程式は 

t

dx
v dx vdt

dt
  

m
dv

dt
=mg

dv

dt
= g

この式を で積分すると 

v = gt +C1

初期条件より 

0 = g ×0+C1

C1 = 0

v = gt

従って 

v =
dx

dt

変位については 

dx

dt
= gt

で積分すると x

dv
m dx Fdx

dt
 

dv
m vdt Fdx

dt
 

A B 

x(t1) = 0

t = t1

v(t1) = v1

t = t2

x(t2 ) = x

x

v(t2 ) = v2

ここで初期条件を 

と設定すると 

dv
m vdt Fdx

dt
 

21

2

d
mv dt Fdx

dt

 
 

 
 

2 2

1 1

21

2

v x

v x

d
mv dt Fdx

dt

 
 

 
 

A B 

1 1( )x t x

t = t1

1 1( )v t v

t = t2

2 2( )x t x

x

v(t2 ) = v2



 2 2

2 1 2 1

1 1

2 2
mv mv F x x  

 
2

2

1

1

21

2

v
x

x
v

mv Fx
 

 
 



仕事とエネルギー 
仕事と力の関係 

物体に力を加えて、 
物体を移動させる事 

力 

[ML]

[T 2 ]
[L]=

[L2M ]

[T 2 ]

と定義される。 

物理における「仕事」＝力がする働き 

x

F

W F x 

F Wが物体にした仕事  (Work) は、 

「力 が物体に仕事 をした」 F W
「物体は力 に仕事 をされた」 F W

次元 

定義 

dv
m F

dt


運動方程式 

2 2

1 1

21
cos

2

v x

v x

d
mv dt F dx

dt

 
 

 
 

 2 2

2 1 2 1

1 1
cos

2 2
mv mv F x x  

 
2

2

1

1

21
cos

2

v
x

x
v

mv F x
 

 
 



移動方向の力だけが仕事をする 

x

F

斜め上に引っ張る 

cosF 

sinF 



N

mg

場の力：重力  

接触力：張力 

物体に作用する力 

垂直抗力 

mg

F

N

垂直抗力： N
場の力：重力  mg

sinF 

仕事をしていない 

cosW F x 

の 成分： yF

F



cos
dv

m F
dt



dv
m F

dt


運動方程式 



変位には貢献していない 

仕事 

x

F

斜め上に引っ張る場合 

cosF 

sinF 

cos cosW F x Fx   

力 F Wが物体にした仕事  (Work) は、 



W = Fx
cosW Fx の角をなす場合： 

・力の向きと移動方向が同じ場合：  

・力の向きと移動方向が 

作用した力×距離 



cos
dv

m F
dt



運動方程式 

2 2

1 1

21

2

v x

v x

d
mv dt Fdx

dt

 
 

 
 

2 2

1 1

21
cos

2

v x

v x

d
mv dt F dx

dt

 
 

 
 



仕事 

x

F

斜め上に引っ張る場合 

cosF 

sinF 

W = Fcosq × x = Fxcosq

力 F Wが物体にした仕事  (Work) は、 



W = Fx
W = Fxcosqの角をなす場合： 

・力の向きと移動方向が同じ場合：  

・力の向きと移動方向が 

作用した力×距離 

q

cos
dv

m F
dt



運動方程式 

2 2

1 1

21

2

v x

v x

d
mv dt Fdx

dt

 
 

 
 

2 2

1 1

21
cos

2

v x

v x

d
mv dt F dx

dt

 
 

 
 

 2 2

2 1 2 1

1 1
cos

2 2
mv mv F x x  

 
2

2

1

1

21
cos

2

v
x

x
v

mv F x
 

 
 



仕事〜摩擦力 

摩擦力 

移動方向の力だけが仕事をする 

摩擦力 

負の仕事： 

x

F

斜め上に引っ張る + 摩擦力を考慮する場合 

cosF 

sinF 



N

f

mg

場の力：重力  

接触力：張力 

物体に作用する力 

垂直抗力 

mg

F

f

N

垂直抗力： N
場の力：重力  mg

sinF 

仕事をしていない 

2W f x  
1 cosW F x 正の仕事： 

負の仕事 

の 成分： yF

に対して邪魔をしている 

は右向きに移動すること f

cos
dv

m F f
dt

 



仕事〜摩擦力 

x

F

斜め上に引っ張る + 摩擦力を考慮する場合 

Fcosq

Fsinq

q

N

f

mg

cos
dv

m F f
dt

 

cos
dv

m F f
dt

 

運動方程式 

 
2 2

1 1

21
cos

2

v x

v x

d
mv dt F f dx

dt

 
  

 
 

   2 2

2 1 2 1 2 1

1 1
cos

2 2
mv mv F x x f x x    

 
2

2

1

1

21
cos

2

v
x

x
v

mv F x fx
 

  
 



仕事の原理 
たとえ、どんなに便利な道具を用いて物体を動かすのに 
必要な力を小さくしても、決して仕事で得することは無い。 



hF1

sin

h



例 

F2

質量 の物体を持ち上げるために必要な仕事量をそれぞれ考える。 m

ゆっくり動かす 



q

2F

N

真上に引き上げる場合 

mgcosq

mgsinq

mg

W1 = F1Dx = mgsinq ×
h

sinq

= mgh

2 2W F x mgh  

物体を持ち上げる為には 

W1 =W2

が必要である。 

この時の仕事は 

道具は、必要な力を小さくすることはできるが、仕事の量は変わらない 

仕事の原理 

2F mg





F1

N

斜面に沿って引き上げる場合 

cosmg 

sinmg 

mg

1 1 sin
sin

h
W F x mg 


   

= mgh

W2 = F2Dx = mgh

直接持ち上げる場合 

W1 =W2

従って 

となり、仕事としては同じになる 

道具は、必要な力を小さくすることはできるが、仕事の量は変わらない 

仕事の原理 

物体を引き上げる為には 

が必要である。 

この時の仕事は 

1 sinF mg 



q

F1

N

斜面に沿って引き上げる場合 

mgcosq

mgsinq

mg

W1 = F1Dx = mgsinq ×
h

sinq

= mgh

W2 = F2Dx = mgh

直接持ち上げる場合 

W1 =W2

従って 

となり、仕事としては同じになる。 

道具は、必要な力を小さくすることはできるが、仕事の量は変わらない。 

仕事の原理 

物体を引き上げる為には 

が必要である。 

この時の仕事は 

1 sinF mg 



仕事〜ベクトルの内積 

A B

ベクトルの内積 
B

A

cosA B AB  

これを仕事に応用すると 

cosF x Fx  

つまり、 

W F x 



cosB 

F

x


cosF 



仕事〜線積分 

微小距離 

cosi i iW F r   

となる。 

 dW = F ×dr

これを区間で積分すると 

 
W = F ×dr

A

B

ò

 Fi

cosi iF 

y

O

A 

B 

x

ir

曲線 C 

ir だけ移動 

したとすると 

iF r 

を限りなく小さくすると  Dri

となる。 

線積分 

「仕事」は「力の距離積分」で計算することができる 



微小距離 

DWi = F ×Dri cosqi

となる。 

dW F dr 

これを区間で積分すると 

B

A
W F dr 

 Fi

Fi cosqi
y

O

A 

B 

x

ir

曲線 C 

 Dri だけ移動 

したとすると 

 = F ×Dri

を限りなく小さくすると ir

となる。 

線積分 

「仕事」は「力の距離積分」で計算することができる 

4r



仕事〜積分計算 

 
W = F ×dxò = kxdx = k

1

2
x2é

ëê
ù

ûú0

x

=
1

2
kx2

0

x

ò
0

0

[ ]

h

hW F dx mgdx mg x mgh     

重力 (一定) における仕事 F = mg

バネを x だけ縮めたときの弾性力 F = kx における仕事 

h



力学基礎演習 
 

4.7 仕事とエネルギー 
問題27 45ページ 

追加設問 

 
 

物体の運動方程式を書け。 



1 2

2

m m
F G

r


の値を概算せよ。 

F

ER

F

m

EM

h

 
2

E

E

mM
F G

R h




物体に働く万有引力は 

より、 
Eh R

E ER h R 

と近似すると 

 
2 2

E E

EE

mM mM
F G G

RR h
 



2

E

E

GM
m

R


等速度運動 :  

例題 

以下の数値を用いて重力加速度 

t = 0

g

66.38 10ER  

等加速度運動 : 

(但し、初期条件は とする。) で x = 0

66.38 10ER  

245.98 10EM  

116.673 10G  

2 2[Nm / kg ]

[m]

[kg]

力学基礎演習 4.7 



仕事〜積分計算 

 
W = F ×dxò = kxdx = k

1

2
x2é

ëê
ù

ûú0

x

=
1

2
kx2

0

x

ò

 
W = F ×dxò = mgdx = mg[x]0

h = mgh
0

h

ò

重力 (一定) における仕事 F = mg
バネを x だけ縮めたときの弾性力 F = kx における仕事 



仕事率 

仕事率：単位時間あたりの仕事 

W
P

t





国際単位：ワット [ W =J / S ] 

１秒間に１ [ J ] の仕事をするときの仕事率が１ [ W ] 

[M ]
[L]

[T 2 ]
[L]

1

[T ]
=

[ML2 ]

[T 3]

0
lim

t

W dW
P

t dt 


 



dW = F ×dx

P =
F ×dx

dt
= F ×

dx

dt
= F ×v

瞬間の仕事率 

定義 

次元 



仕事率：単位時間あたりの仕事 

P º
DW

Dt
国際単位：ワット [ W =J / S ] 

１秒間に１ [ J ] の仕事をするときの仕事率が１ [ W ] 

[M ]
[L]

[T 2 ]
[L]

1

[T ]
=

[ML2 ]

[T 3]

0
lim

t

W dW
P

t dt 


 



dW F dx 

F dx dx
P F F v

dt dt


    

瞬間の仕事率 

仕事 

次元 

dWは 

従って、 



0
lim

t

W dW
P

t dt 


 



dW = F ×dx

P =
F ×dx

dt
= F ×

dx

dt
= F ×v

瞬間の仕事率 



エネルギー 

仕事をする能力＝エネルギー 

壁から受ける力 

m

x

v v = 0

例 

壁 

ある物体が、他の物体に対して力を及ぼし 
仕事をする能力をもつとき、 
その物体はエネルギーを持っているという 

質量 mの弾丸が壁に打ち込まれる 

F
この運動は等加速度運動と考えることができる 

が一定とすると 



運動方程式は 

ma F 
F

a
m

 

2 20 2v ax 

m

x

v
v = 0a

F

等加速度運動なので 

が成立する。 

よって 

2 20 2
F

v x
m

 
   

 



エネルギー〜運動エネルギー 
をかけてみると 

2 21 1 1
0 2

2 2 2

F
m m v m x Fx

m

 
        

 

最後の運動能力 最初の運動能力 弾丸がされた仕事 

運動エネルギーの変化は、外力の仕事によるものである 

両辺に  
m

2

運動エネルギー 

K =
1

2
mv2

質量と速度の2乗に比例 

[M ]
[L]

[T ]

æ

èç
ö

ø÷

2

=
[ML2 ]

[T 2 ][ J = kg m2 / s2] 

次元 



エネルギー〜位置エネルギー 

この仕事によって物体は位置エネルギーを得た 

重力 

U =mgh

重力による位置エネルギー 

下から持ち上げるときにした仕事は 

mgに逆らって h だけ持ち上げた 

m

h

mg

W F h mg h   

重力による位置エネルギー 

基準からの高さに比例 
[M ]

[L]

[T 2 ]
[L] =

[ML2 ]

[T 2 ]

[ J = kg m2 / s2] 

基準 

次元 



運動エネルギーと位置エネルギー 

A 

B 
2 21 1

2 2
B Amg h mv mv  

重力 

外力の仕事 

運動エネルギーの変化は外力の仕事による 

vB = v

h mg

m

vA = 0

v

仕事をした 
だけ引きずりおろした 

が物体を mg
h

B点で運動エネルギーを 
持つことができた 

これを式で表すと 

=
1

2
mv2

運動エネルギーの変化 外力の仕事 

基準 



エネルギー保存則 
この式は、高さ 

mgh =
1

2
mv2

hの位置エネルギーが運動エネルギーに変換されたとも考えられる 

位置エネルギー 運動エネルギー 

エネルギーは無くなったり増えたりしない 

エネルギー保存則 

21
0

2
mgh mv 

(重力場の運動) 



運動方程式〜エネルギー保存則 

ma = F a =
dv

dt

m
dv

dt
= F

この両辺に 

mv
dv

dt
= F

dx

dt

21

2

d dx
mv F

dt dt

 
 

 

運動方程式からエネルギーを考える 

運動方程式は 

より、 

と表すことができる 

をかけると v =
dx

dt

となる 

A B 

x(t1) = 0

t = t1

v(t1) = v1

t = t2

x(t2 ) = x

x

v(t2 ) = v2

ここで初期条件を 

と設定する 



d

dt

1

2
mv2æ

èç
ö

ø÷
dt

t1

t2

ò = F
dx

dt
t1

t2

ò dt

で積分すると t

2 2

2 1

0

1 1

2 2

x

mv mv Fdx  

エネルギーの変化量 

物体に働く力 F がした仕事 

から まで x = 0 x

運動エネルギーの変化は外力の仕事に等しい 



運動方程式〜エネルギー保存則 

で積分する t

最初と最後の 
エネルギーと仕事の関係式 

単位時間あたりの 
仕事とエネルギーの関係式 

エネルギー方程式 

単位時間あたりの変位をかけた 

最初から最後まで時間に対して和を取る 

をかける v =
dx

dt

mv
dv

dt
= F

dx

dt

d

dt

1

2
mv2æ

èç
ö

ø÷
dt

t1

t2

ò = F
dx

dt
t1

t2

ò dt



保存力 

ここでの運動が保存力による運動とすると 

保存力での経路 

点A − C − 点Bの経路を通り、 
そこからDを経由して点Aに戻るときの仕事は 

点Aから点Bまでに行くのに2つの経路を考える 

A 

保存力のする仕事は移動経路によらない 

B 

A 

B C 

D 

D 

C 

WACB +WBDA = 0

WADB +WBDA = 0

点A − D − 点Bの経路を通り、同じ道を通って 
点Aに戻るときの仕事は 

WACB =WADB

よって 



保存力 

この運動における仕事は 

この計算の意味を考えるために簡単な例を考える 

元の位置に戻るまでに力がした仕事がゼロになる 

mg

v

v

0 0

0 0

( ) 0W Fdx mg dx    

鉛直投げ上げ運動 

O

保存力 



エネルギー保存則〜自由落下 

dv
m mg

dt
 

この両辺に 

dx
v

dt

dv
m mg

dt
 

 21

2

d d
mv mgx

dt dt

 
  

 

自由落下の運動 

運動方程式は 

一定 

と表すことができる 

をかけると v =
dx

dt

となる 

は時間に対して よって、 

d

dt

1

2
mv2 +mgx

æ

èç
ö

ø÷
= 0

1

2
mv2 +mgx

変化しない一定量 

1

2
mv2 +mgx =

運動エネルギーと位置エネルギーの和が 
一定であるからエネルギー保存則が 
成り立っている。 

x



エネルギー保存則〜バネの単振動 

dv
m kx

dt
 

この両辺に 

dx
v

dt

dv
m kx
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バネの単振動 

運動方程式は 

一定 

と表すことができる 

をかけると v =
dx

dt

となる 

は時間に対して よって、 

d

dt

1

2
mv2 +

1

2
kx2æ

èç
ö

ø÷
= 0

1

2
mv2 +

1

2
kx2

変化しない一定量 

1

2
mv2 +

1

2
kx2 =

運動エネルギーとバネの弾性エネルギー 
の和が一定であるからエネルギー保存則 
が成り立っている。 

x



力学基礎演習 
 

4.7 仕事とエネルギー 
問題28 45ページ 

追加設問 
問題29 36ページ 

追加設問 
4.7.1 動摩擦力 
問題30 47ページ  

追加設問 
4.7.2 保存力と仕事 
問題31 48ページ 

(0) 物体の運動方程式を書け。 

(2.1) 物体の運動方程式を書け。 

物体の運動方程式を書け。 

(1.1) 物体の運動方程式を書け。 

物体の運動方程式を書け。 
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4.7.3 ポテンシャルエネルギー 
問題32 49ページ 

追加設問 
問題33 49ページ 

4.7.1 動摩擦力 
問題34 50ページ  
問題36 51ページ 

追加設問 
問題37 52ページ 

追加設問 

(0) 物体の運動方程式を書け。 

(2.1) 物体の運動方程式を書け。 

物体の運動方程式を書け。 

(1.1) 物体の運動方程式を書け。 

物体の運動方程式を書け。 

物体の運動方程式を書け。 

物体の運動方程式を書け。 




