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速度に比例した抵抗力が作用する運動 – 補足 
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単振動の一般解 

例題 
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m A t t         

2 21
( )

2
E t m A

 2 2 21
( ) sin

2
sU t m A t   

 2 2 21
( ) cos

2
K t m A t   

E

o

2

T
t

T



単振動〜例題 

なめらかな水平面上に壁からバネが取り付けられている。 

例題 

噴出物質の速度は常に 

物体の質量を 

以下の問いに答えよ。 になるように噴出されるものとする 

を求めよ。 

0t 
m

で初速度 

v0

0

を壁向きに与えると、物体は単振動をした。 

とする。 

とする 

バネは自然長の状態で静止しているとする。 

m(t)

0v

2. 物体の速度 

後の速度 

、バネ定数を k

F

3. 物体の変位 

として描け。 

を求めよ。 

x(t)

t

M
v0

v(t)
m(t)

最初の状態 

のグラフを横軸 

t

1. 物体の運動方程式を記述せよ。 

( )v t を求めよ。 

m

F

5.  の大きさを求めよ。  v

4. 物体の加速度 ( )a t

( )x t

( ), ( ), ( )v t x t a t



単振動〜例題 

バネの片方を天井に固定し吊り下げた。このときのバネの下端を原点とする。 

例題 

の位置まで引き下げ、静かに離し振動させた。 

以下の問いに答えよ。 

物体をそこからさらに 

とする。 

0t 

m

この瞬間を 

v0

0

を壁向きに与えると、物体は単振動をした。 
とする。以下の問いに答えよ。 

の物体を取り付けて静止させた。この位置を バネの下端に質量 

m(t)

0x

2. 物体の速度 
後の速度 

、バネ定数を k

F

3. 物体の変位 を求めよ。 

x(t)M
v0

v(t)
m(t)

最初の状態 

t

1. 物体の運動方程式を記述せよ。 

( )v t を求めよ。 

m

F

の大きさを求めよ。  v

( )x t

1x

o

x

1x

0x



単振り子〜例題 

質量 

例題 

のひもにつるされている。 

物体の質量を 

このときの位置を 

の物体が長さ 

を求めよ。 

0t 

m

で初速度 

1t

0

を壁向きに与えると、物体は単振動をした。 

である。 

で静かに手放した。 ひもをつるしている点を通る鉛直線を基準とし、振れ角 

m(t)

0v

2. 物体の運動は単振り子とみなせる。周期、振幅を求めよ。 
後の速度 

、バネ定数を 

A

m

3. 物体を手放した時刻を 

として描け。 

とすると、原点を初めて通過する時刻 

x(t)

t

M
v0

v(t)
m(t)

最初の状態 

のグラフを横軸 t

1. 物体の運動方程式を記述せよ。 

L

を求めよ。 

m

F
4. 物体の変位  

の大きさを求めよ。 

A L

4. 物体の加速度 ( )a t

( )x t

( ), ( ), ( )v t x t a t

とする。但し、 

以下の問いに答えよ。 



その他の振動 

速度に比例する抵抗力・・・など 

 a
 F

・減衰振動 

・強制振動 

一般解 

dx
v

dt


(参考) 

強制力が働く 

液体中 

外部から周期的な力が加わった場合 

復元力が働くように設計された橋梁 

(一定の周期で風が吹く) 

ブランコ 

お寺の鐘 


