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円運動～等速円運動 

運動方程式は 

 v

 a
 F

等速円運動 

運動量 

k

m
 

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]
2
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dt
 

0
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y xL xp yp 

0( , ) ( ,0)x y r
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
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( )f r


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x


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y
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とすると 
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2
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v
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r
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d

dt


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d

dt
mv( ) = F

円運動～運動方程式 

ma kx 運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]
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=

[ML]
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 

2
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2
2

2

d x
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三角関数 
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  
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d
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  

dL
N

dt


力のモーメントに等しい 

よって、 

この質点に働く点 
まわりの o

0
dL

dt


一般に、極座標表示において 

運動方程式 

N

は 

L

回転の運動方程式 

と表される。 
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ここで、角運動量 
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t
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x
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

r

一般的な極座標表示 (加速度) 

に代入 

,ra a

2

2
2 0
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m r

dt dt dt

  
  

 
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2

d r d
m r S

dt dt

  
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d

dt
mv( ) = F

円運動～運動方程式 

ma kx 中心方向に加速度があると考えられる 運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

糸の長さは 

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]

次元 2

2

d x k
x

dt m
 

2
2

2

d x
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 

2
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d x
x

dt
 

三角関数 

cos

r を 

r ma r F  

 
d

r mv r F
dt

  

 
d

r p r F
dt

  

0
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dt


dp
F

dt


dv
r m r F

dt
   

d
r p r F

dt
  

dL
N

dt


力のモーメントに等しい 

この質点に働く点 
まわりの o

0
dL

dt


一般に、極座標表示において 

運動方程式 

N

は 

L

回転の運動方程式 

と表される。 
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   

   

0F 

( )f r



y

x



r
x

y

ここで、角運動量 

L
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とすると、 
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d

dt
mv( ) = F

単振り子～エネルギー 

ma kx 運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

一般的な極座標表示 (加速度) 

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]

次元 2

2
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x

dt m
 

2
2
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d x
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2
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三角関数 
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r ma r F  
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d
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d
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  
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d
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  
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dt


に代入 
この質点に働く点 

まわりの o

0
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dt


運動方程式 

N

は 

L

回転の運動方程式 

0
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ここで、角運動量 
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d

dt
mv( ) = F

単振り子～エネルギー 

ma kx 

中心方向に加速度があると考えられる 

運動方程式は 

とおくと 運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

運動方程式の 

m

( )rma F r

従って、運動方程式は 

2
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d x
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dt
 

運動量 

k

m
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dp

dt
= F

微分方程式 [M ]
[L]
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=
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d
r p r F

dt
  

dL
N

dt


力のモーメントに等しい 



この質点に働く点 
まわりの 

o

0
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dt


さらに、極座標表示において 

N

は 

L

回転の運動方程式 

と表される。 
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単振り子～エネルギー 

ma kx 

中心方向に加速度があると考えられる 

運動方程式は 

とおくと 運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

ここで両辺に 

m

( )rma F r

従って、運動方程式は 
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dt
= F
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dt


力のモーメントに等しい 



この質点に働く点 
まわりの o

0
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dt


さらに、極座標表示において 

N

は 

L

回転の運動方程式 

と表される。 
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単振り子～エネルギー 

ma kx 運動方程式は 

とおくと 運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

従って、この運動においてエネルギーが保存することがわかる。 
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円運動〜例題 

図のような円錐振り子のモデルを考える。 

例題 

糸の張力 

糸の長さは 

1. 水平面に垂直な軸を取り、運動方程式を記述せよ。 

であるとする。以下の問いに答えよ。 

2. 点 

1. 質点の速さを 

、物体の質量は m

まわりの角運動量を表せ。 

P

v

4. 題意の式を導け。 

としたとき、点 

まわりの力のモーメントを求めよ。 

物体は水平面内で円運動していて、糸と鉛直線の 

、物体の速さ 

N 

o

o
2

2
sin

d g

dt l


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である。 

なす角は 

と表すことができる。 

3. 一般的に、平面極座標において 

r2.  方向、 方向の加速度を としたとき、  ,ra a
それぞれの方向の運動方程式を記述せよ。 
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円運動〜例題 

図のような円錐振り子のモデルを考える。 

例題 

を超えると水平面から離れる。 

糸の長さは 

1. 水平面に垂直な軸を取り、運動方程式を記述せよ。 

の地点に設置されている。 

2. 点 

1. 質点の速さを 

、物体の質量は m

まわりの角運動量を表せ。 
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4. 角速度 

としたとき、点 

まわりの力のモーメントを求めよ。 
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である。 

糸は水平面から高さ 

が 

3.糸の張力 

r2.  方向、 方向の加速度を としたとき、  ,ra a
それぞれの方向の運動方程式を記述せよ。 
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水平面は滑らかで摩擦は無視できるとする。 

以下の問いに答えよ。 
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円運動〜例題 

図のような円運動のモデルを考える。 

例題 

糸の張力 

糸の長さは 

3. 点 

であるとする。 

2. 点 

1. 質点の速さを 

、物体の質量は m

まわりの角運動量を表せ。 

P

v

4. 題意の式を導け。 

としたとき、点 

まわりの力のモーメントを求めよ。 

物体を水平の状態にして放し、円運動する。 

、物体の速さ 

N 
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2
sin

d g

dt l


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 l
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である。 

糸と鉛直線のなす角を 

と表すことができる。 

2. 最下点 

r1.  方向、 方向の加速度を としたとき、  ,ra a
それぞれの方向の運動方程式を記述せよ。 
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以下の問いに答えよ。 

と表すことができる。 
と表すことができる。 

での糸の張力 を求めよ。 
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B BT

CTでの糸の張力 を求めよ。 
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円運動〜例題 

図のような円運動のモデルを考える。 

例題 

糸の張力 

糸の長さは 

3. 点 

であるとする。 

2. 点 

1. 質点の速さを 

、物体の質量は m

まわりの角運動量を表せ。 

P

v

4. 題意の式を導け。 

としたとき、点 

まわりの力のモーメントを求めよ。 

物体を水平の状態にして放し、円運動する。 

、物体の速さ 
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である。 

糸と鉛直線のなす角を 

と表すことができる。 

2. 物体が1回転するために必要な初速 

r1.  方向、 方向の加速度を としたとき、  ,ra a
それぞれの方向の運動方程式を記述せよ。 
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、回転の周期 を求めよ。 S Tv

以下の問いに答えよ。 

と表すことができる。 
と表すことができる。 

一回転するために必要な初速 

の条件を求めよ。 
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BTCTでの糸の張力 を求めよ。 
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