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面積速度～万有引力 

ma kx 
中心方向に加速度があると考えられる 
運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

太陽のまわりを回る惑星のモデルを考える 

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]

次元 2

2

d x k
x

dt m
 

2
2

2

d x
x

dt
 

2
2

2

d x
x

dt
 

三角関数 

cos

r を 

r ma r F  

 
d

r mv r F
dt

  

 
d

r p r F
dt

  

0
dL

dt


dp
F

dt


dv
r m r F

dt
   

d
r p r F

dt
  

dL
N

dt


力のモーメントに等しい 



この質点に働く点 
まわりの o

0
dL

dt


面積速度：動径ベクトルが単位
時間に描く面積 

運動方程式 

N

は 

L

回転の運動方程式 

となる。 

0
dr

dt


0ma 

22

2
( )

d r d
m r F r

dt dt

  
   

   

0F 

方向の式に着目し、 

( )f r

( )f r



r

r

x

ここで、角運動量 

L

0r r

0ma 

rma S 

一定なので 

糸の長さは 

2

2
0

d
mr

dt




2
d

mr S
dt

 
 

 

( )rF f r 
ma S

d

dt




22

2r

d r d
a r

dt dt

  
   

   

2

2
2

dr d d
a r

dt dt dt


  
  
 

2r

Mm
ma G

r
 

sin
dv d

mv mgl
dt dt





 

sin
dv d

mv mgl
dt dt





 

0ma 

2

2
2 0

dr d d
m r

dt dt dt

  
  

 

21
0

d d
mr

r dt dt

  
  

  

2 ( .)
d

mr L const
dt


 　　

 
1

sin
2

S r r r    

x
x


x

S sinr r  

o

m

運動方程式は 

a を代入すると 

に代入 

,ra a

一般的な極座標表示 (加速度) 

22

2r

d r d
a r

dt dt

  
   

   

2

2
2

dr d d
a r

dt dt dt


  
  
 

M

太陽の質量を 、惑星の質量を とする。 mM



 

d

dt
mv( ) = F

面積速度～万有引力 

ma kx 中心方向に加速度があると考えられる 
運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

面積速度を考えると 

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]

次元 

2
2

2

d x
x

dt
 

2
2

2

d x
x

dt
 

三角関数 

cos

r を 

r ma r F  

 
d

r mv r F
dt

  

 
d

r p r F
dt

  

0
dL

dt


dp
F

dt


dv
r m r F

dt
   

d
r p r F

dt
  

r一方、 

この質点に働く点 
まわりの o

示していて、ケプラーの第2法則に 

N

は 

L

回転の運動方程式 

0
dr

dt
0ma 

22

2
( )

d r d
m r F r

dt dt

  
   

   

0F 

( )f r


y

x



r
x

y

と表される。 

L

0r r

0ma 

rma S 

一定なので 

糸の長さは 

( )rF f r 

ma S

d

dt




( )rma f r 

sin
dv d

mv mgl
dt dt





 

sin
dv d

mv mgl
dt dt





 

0ma 

2

2
2 0

dr d d
m r

dt dt dt

  
  

 

21
0

d d
m r

r dt dt

  
  

  

2 .
d

r const
dt




 
1

sin
2

S r r r    

が得られる。 
これは面積速度が一定であることを 

1

2
ds r rd 

21

2
r d
動径ベクトルが 
単位時間に描く面積 

Q
P

o

方向の運動方程式は 

oPQ

相当する。 

 
1

sin
2

S r r r   


 

0 0

1
sin

2lim lim
t t

r r r
S

t t



   

  



 

0

1
1 sin

2
lim
t

r
r r

r

t



 

 
   
 



2

0

1 sin
lim 1

2t

r
r

t r



 

  
  

  

21

2

dS d
r

dt dt




2 .
d

r const
dt




の円であると近似する。 

21

2

dS d
r

dt dt




2 d
mr L

dt




21
2 2

2

dS d
m m r

dt dt

 
  

 

2

dS L

dt m


22

2 2

d r d Mm
m r G

dt dt r

  
    

    2

d L

dt mr




22

2 2 2

d r L Mm
m r G

dt mr r

  
    

   

2

2 3 2

d r L Mm
m G

dt mr r
  

実際の惑星の軌道は楕円であるが、 

円からのずれが小さいことを考慮し、 

軌道を半径 a



 

d

dt
mv( ) = F

面積速度～万有引力 

ma kx 中心方向に加速度があると考えられる 
運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

よって、 

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]

次元 

2
2

2

d x
x

dt
 

2
2

2

d x
x

dt
 

三角関数 

cos

r を 

r ma r F  

 
d

r mv r F
dt

  

 
d

r p r F
dt

  

0
dL

dt


dp
F

dt


dv
r m r F

dt
   

d
r p r F

dt
  

r

従って、 

この質点に働く点 
まわりの o

は 

N

は 

L

回転の運動方程式 

0
dr

dt
0ma 

22

2
( )

d r d
m r F r

dt dt

  
   

   

0F 

( )f r


y

x



r
x

y

となり 

L

0r r

0ma 

rma S 

一定なので 

糸の長さは 

( )rF f r 

ma S

d

dt




( )rma f r 

sin
dv d

mv mgl
dt dt





  sin

dv d
mv mgl

dt dt





 

0ma 

2

2
2 0

dr d d
m r

dt dt dt

  
  

 

21
0

d d
m r

r dt dt

  
  

  

2 .
d

r const
dt




 
1

sin
2

S r r r    

が得られる。 

公転周期 

1

2
ds r rd 

21

2
r d
動径ベクトルが 
単位時間に描く面積 

Q
P

o

方向の運動方程式は 

oPQ

と表される。 

 
1

sin
2

S r r r   


 

0 0

1
sin

2lim lim
t t

r r r
S

t t



   

  



 

0

1
1 sin

2
lim
t

r
r r

r

t



 

 
   
 



2

0

1 sin
lim 1

2t

r
r

t r



 

  
  

  

21

2

dS d
r

dt dt




2 .
d

r const
dt




の円であると近似する。 

21

2

dS d
r

dt dt




2 d
mr L

dt




21
2 2

2

dS d
m m r

dt dt

 
  

 

2

dS L

dt m


22

2 2

d r d Mm
m r G

dt dt r

  
    

   

2

d L

dt mr




22

2 2 2

d r L Mm
m r G

dt mr r

  
    

   
2 2

2 3 2

d r L Mm
m G

dt mr r
  

となる。この式は 

と変形でき、これは 

に相当することを意味している。 a

0
dr

dt


2

3 2

L Mm
G

ma a


2 2L GMm a

T

2 2 22

2

a a m a
T

dS L L

dt m

  
  

2

2

2m a
T

GMm a




3

2
2

a
GM




ケプラーの第3法則 

「惑星の周期の二乗は長半径の三乗
に比例する」 

2
2 34

T a
GM






 

d

dt
mv( ) = F

万有引力～エネルギー 

ma kx 中心方向に加速度があると考えられる 
運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

質量 

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]

次元 

2
2

2

d x
x

dt
 

2
2

2

d x
x

dt
 

三角関数 

cos

r を 

r ma r F  

 
d

r mv r F
dt

  

 
d

r p r F
dt

  

0
dL

dt


dp
F

dt


dv
r m r F

dt
   

d
r p r F

dt
  

r

両辺に 

この質点に働く点 
まわりの o

は 

N

は 

L

回転の運動方程式 

0
dr

dt
0ma 

22

2
( )

d r d
m r F r

dt dt

  
   

   

0F 
( )f r

r

y

v



r
m

y

の 

L

0r r

0ma 

rma S 

一定なので 

糸の長さは 

( )rF f r 

ma S

d

dt




( )rma f r 

sin
dv d

mv mgl
dt dt





  sin

dv d
mv mgl

dt dt





 

0ma 

2

2
2 0

dr d d
m r

dt dt dt

  
  

 

21
0

d d
m r

r dt dt

  
  

  

2 .
d

r const
dt




 
1

sin
2

S r r r    

運動方程式は 

公転周期 

1

2
ds r rd 

21

2
r d
動径ベクトルが 
単位時間に描く面積 

Q
P

o

方向の運動方程式は 

oPQ

と表される。 

 
1

sin
2

S r r r   


 

0 0

1
sin

2lim lim
t t

r r r
S

t t



   

  



 

0

1
1 sin

2
lim
t

r
r r

r

t



 

 
   
 



2

0

1 sin
lim 1

2t

r
r

t r



 

  
  

  

21

2

dS d
r

dt dt




2 .
d

r const
dt




とする。 

21

2

dS d
r

dt dt




2 d
mr L

dt




21
2 2

2

dS d
m m r

dt dt

 
  

 

2

dS L

dt m


22

2 2

d r d Mm
m r G

dt dt r

  
    

   

2

d L

dt mr




2

dv Mm r
m G

dt r r
 

2 2

2 3 2

d r L Mm
m G

dt mr r
  

となる。 
と変形でき、これは 

天体と人工衛星の距離を 

a

dr
v

dt


2

3 2

L Mm
G

ma a


2 2L GMm a
T

2 2 22

2

a a m a
T

dS L L

dt m

  
  

2

2

2m a
T

GMm a




3

2
2

a
GM




ケプラーの第3法則 

「惑星の周期の二乗は長半径の三乗
に比例する」 

2
2 34

T a
GM




でまわっている。 

の天体のまわりを質量 M m
人工衛星が速度 v

r

( )f r
M

 
dv r

m f r
dt r

 

となる。この式は 
となる。この式は 

の内積を取ると 

となる。この式は 

2

dv Mm r
m G

dt r

dr
v

dt r
   

2

dv Mm r
m G

dt r r
 

2 2

3

1 1

2 2

d Mm d
m v G r

dt r dt

   
    

   

2

3

1 1
2

2 2

d Mm dr
mv G r

dt r dt

 
  

 

21

2

d d Mm
mv G

dt dt r

   
   

   

21
0

2

d Mm
mv G

dt r

 
  

 



 

d

dt
mv( ) = F

万有引力～エネルギー 

ma kx 中心方向に加速度があると考えられる 
運動方程式は 

とおくと 
運動量 

 v

運動量 = 質量 × 速度 

 a
 F

 p = mv

途中計算について 

m

( )rma F r

従って、運動方程式は 

2

2

d x
m kx

dt
 

運動量 

k

m
 

 

dp

dt
= F

微分方程式 [M ]
[L]

[T ]
=

[ML]

[T ]

次元 

2
2

2

d x
x

dt
 

2
2

2

d x
x

dt
 

三角関数 

cos

r を 

r ma r F  

 
d

r mv r F
dt

  

 
d

r p r F
dt

  

0
dL

dt


dp
F

dt


dv
r m r F

dt
   

d
r p r F

dt
  

r

両辺に 

この質点に働く点 
まわりの o

は 

N

は 

L

回転の運動方程式 

0
dr

dt
0ma 

22

2
( )

d r d
m r F r

dt dt

  
   

   

0F 
( )f r

yy
の 

L

0r r

0ma 

rma S 

一定なので 

糸の長さは 

( )rF f r 

ma S

d

dt




( )rma f r 

sin
dv d

mv mgl
dt dt





  sin

dv d
mv mgl

dt dt





 

0ma 

2

2
2 0

dr d d
m r

dt dt dt

  
  

 

21
0

d d
m r

r dt dt

  
  

  

2 .
d

r const
dt




 
1

sin
2

S r r r    

運動方程式は 

公転周期 

1

2
ds r rd 

21

2
r d
動径ベクトルが 
単位時間に描く面積 

Q
P

o

方向の運動方程式は 

oPQ

と表される。 

 
1

sin
2

S r r r   


 

0 0

1
sin

2lim lim
t t

r r r
S

t t



   

  



 

0

1
1 sin

2
lim
t

r
r r

r

t



 

 
   
 



2

0

1 sin
lim 1

2t

r
r

t r



 

  
  

  

21

2

dS d
r

dt dt




2 .
d

r const
dt




ここで 

21

2

dS d
r

dt dt




2 d
mr L

dt




21
2 2

2

dS d
m m r

dt dt

 
  

 

2

dS L

dt m


22

2 2

d r d Mm
m r G

dt dt r

  
    

   

2

d L

dt mr




2

dv Mm r
m G

dt r r
 

2 2

2 3 2

d r L Mm
m G

dt mr r
  

と書き変えると 

と変形でき、これは 

と表される。 

a

dr
v

dt


2

3 2

L Mm
G

ma a


2 2L GMm a
T

2 2 22

2

a a m a
T

dS L L

dt m

  
  

2

2

2m a
T

GMm a




3

2
2

a
GM




ケプラーの第3法則 

「惑星の周期の二乗は長半径の三乗
に比例する」 

2
2 34

T a
GM


 でまわっている。 

の天体のまわりを質量 M m

人工衛星が速度 v r

 
dv r

m f r
dt r

 となる。この式は 
となる。この式は 

の内積を取ると 

となる。この式は 

2

dv Mm r
m G

dt r

dr
v

dt r
   

2

dv Mm r
m G

dt r r
 

2 2

3

1 1

2 2

d Mm d
m v G r

dt r dt

   
    

   

2

3

1 1
2

2 2

d Mm dr
mv G r

dt r dt

 
  

 

21

2

d d Mm
mv G

dt dt r

   
   

   

21
0

2

d Mm
mv G

dt r

 
  

 
t

v
dv

d
 

 
d dv dv

v v v v
dt dt dt

    

 cos0 2
d dv

v v v
dt dt

 

 2
2

d dv
v v

dt dt
 

2 2v v

21

2

dv d
v v

dt dt

 
   

 

 
d dr dr

r r r r
dt dt dt

    

 cos0 2
d dr

r r r
dt dt

 

 2
2

d dr
r r

dt dt
 

ここで と書き変えると 
2 2r r

21

2

dr d
r r

dt dt

 
   

 



万有引力による 
位置エネルギー 

万有引力～エネルギー 

中心方向に加速度があると考えられる 

 v

 a
 F

従って、 

k

m
 

[M ]
[L]

[T ]
=

[ML]

[T ]

0
dL

dt


dp
F

dt


r

は 

は 

22

2
( )

d r d
m r F r

dt dt

  
   

   

0F 
( )f r

yy

L

0r r

0ma 

rma S 

一定なので 

( )rF f r 

ma S

d

dt




( )rma f r 

sin
dv d

mv mgl
dt dt





  sin

dv d
mv mgl

dt dt





 

0ma 

2

2
2 0

dr d d
m r

dt dt dt

  
  

 

21
0

d d
m r

r dt dt

  
  

  

2 .
d

r const
dt




 
1

sin
2

S r r r    

となり、エネルギー保存則が成立する。 

公転周期 

方向の運動方程式は 

2

0

1 sin
lim 1

2t

r
r

t r



 

  
  

  

2 .
d

r const
dt




21

2

dS d
r

dt dt




2 d
mr L

dt




21
2 2

2

dS d
m m r

dt dt

 
  

 

2

dS L

dt m


22

2 2

d r d Mm
m r G

dt dt r

  
    

   

2

d L

dt mr




2 2

2 3 2

d r L Mm
m G

dt mr r
  

と変形でき、これは 

T

2 2 22

2

a a m a
T

dS L L

dt m

  
  

2

2

2m a
T

GMm a




3

2
2

a
GM




ケプラーの第3法則 

「惑星の周期の二乗は長半径の三乗
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万有引力〜例題 

地球の表面上で物体に水平方向に初速度 

例題 

糸の張力 

すると物体は地表すれすれに円運動した。 

3. 点 

但し、エネルギー保存則が成立するモデルとする。 

2. 点 

1. 質点の速さを 

を求めよ。 

M

まわりの角運動量を表せ。 

P

v

4. 題意の式を導け。 

としたとき、点 

まわりの力のモーメントを求めよ。 

地球の表面上で物体に上空方向に初速度 

、物体の速さ 
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を与えた。 

すると物体は無限遠方に飛び去った。 

と表すことができる。 

2. 物体が1回転するために必要な初速 

r

1.  

として 

方向の加速度を としたとき、  ,ra a

、万有引力定数を 
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、回転の周期 を求めよ。 S Tv

地球の半径を 

と表すことができる。 
と表すことができる。 

、地球の質量 

の条件を求めよ。 

C B
BTCTでの糸の張力 を求めよ。 

A

1v

C

このような運動をする為の 
2v の条件を求めよ。 
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を与えた。 
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以下の問いに答えよ。 
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万有引力〜例題 

極座標における運動方程式 

例題 

糸の張力 

より、力学的エネルギー保存則を導け。 

3. 点 

2. 点 

1. 質点の速さを まわりの角運動量を表せ。 

P

v

4. 題意の式を導け。 

としたとき、点 

まわりの力のモーメントを求めよ。 
、物体の速さ 
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と表すことができる。 
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、回転の周期 を求めよ。 S Tv
と表すことができる。 
と表すことができる。 

一回転するために必要な初速 

C B
BTCTでの糸の張力 を求めよ。 
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惑星のモデル〜例題 

質量 

例題 

糸の張力 

近日点 

3. 点 

2. 点 

1. 質点の速さを 

遠日点 
1v

まわりの角運動量を表せ。 

P

v

4. 題意の式を導け。 

としたとき、点 

まわりの力のモーメントを求めよ。 

万有引力定数を 

、物体の速さ 
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
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2r での速さを 

と表すことができる。 

2. 面積速度を求め、 

1 2 1 2, , ,v v r r1. 角運動量から の関係式を求めよ。 

方向の加速度を 

とする。 

 ,ra a
それぞれの方向の運動方程式を記述せよ。 
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の関係式を求めよ。 
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BTCTでの糸の張力 を求めよ。 
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G として以下の問いに答えよ。 

0v
一回転するために必要な初速 
一回転するために必要な初速 

の太陽のまわりを楕円軌道上で運動している。 の惑星が質量 m M
での速さを 

1r 2v

1 2 1 2, , ,v v r r

3. 近日点と遠日点でのエネルギーの関係を記述せよ。 
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