
面積速度～運動方程式
中心力が作用するモデルを考える
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面積速度～運動方程式
面積速度：

よって、面積は

動径によって面積が描かれる速さは
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動径ベクトルが
単位時間に描く面積
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面積 oPQ に着目すると
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とみなすことができる。
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( )sinr r +  

を無限小にした時の

の極限値で与えられる。
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面積速度～運動方程式
この極限を考えると この式と、

従って、

となる。
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どんな中心力であっても

面積速度が一定である。

ケプラーの第2法則

方向の運動方程式を

となる。
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面積速度～万有引力
太陽のまわりを回る惑星のモデルを考える



となる。

方向の式に着目し、
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運動方程式は

a を代入すると
一般的な極座標表示 (加速度)
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太陽の質量を 、惑星の質量を とする。mM
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面積速度～万有引力
面積速度を考えると r一方、

示していて、ケプラーの第2法則に

と表される。
sin
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が得られる。
これは面積速度が一定であることを

方向の運動方程式は

相当する。
の円であると近似する。
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実際の惑星の軌道は楕円であるが、

円からのずれが小さいことを考慮し、

軌道を半径 a

180705-05



面積速度～万有引力
よって、 従って、

は

となり

が得られる。

公転周期

と表される。

となる。この式は

と変形でき、これは

に相当することを意味している。
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「惑星の周期の二乗は長半径の三乗
に比例する」
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万有引力～エネルギー
質量 両辺に
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の

運動方程式は

と表される。
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万有引力～エネルギー
途中計算について

と表される。

ここで と書き変えると

と表される。
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万有引力による
位置エネルギー

万有引力～エネルギー
従って、

となり、エネルギー保存則が成立する。
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エネルギーの式について、

基準点について
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力学基礎演習

4.7.3 ポテンシャルエネルギー
問題33 47ページ
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万有引力〜例題

地球の表面上で物体に水平方向に初速度

例題

すると物体は地表すれすれに円運動した。

但し、エネルギー保存則が成立するモデルとする。

を求めよ。

M

地球の表面上で物体に上空方向に初速度

G


r

o

1v

R

を与えた。

すると物体は無限遠方に飛び去った。

として、万有引力定数を地球の半径を 、地球の質量

1v

このような運動をする為の
2v の条件を求めよ。

1v

を与えた。
2v

以下の問いに答えよ。

r

o

2v
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万有引力〜例題

極座標における運動方程式

例題

より、力学的エネルギー保存則を導け。
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惑星のモデル〜例題

質量

例題

近日点 遠日点
1v

万有引力定数を

1r

2r での速さを

2. 面積速度を求め、

1 2 1 2, , ,v v r r1. 角運動量から の関係式を求めよ。

とする。

の関係式を求めよ。

2v
G として以下の問いに答えよ。

の太陽のまわりを楕円軌道上で運動している。の惑星が質量m M
での速さを

1r 2v

1 2 1 2, , ,v v r r

3. 近日点と遠日点でのエネルギーの関係を記述せよ。

2r

1v
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運動方程式から導かれる関係

仕事とエネルギーの関係

力積と運動量の関係モーメントと角運動量の関係

運動方程式 ma = F
2

1

2 2

2 1

1 1

2 2

x

x

mv mv Fdx− = 

B Ap p Fdt− = ( )
d

r p r F
dt

 = 

dL
N

dt
=

角運動量 モーメント

で積分t

で積分x

で外積r左側から
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設定した軸の向きに注意しながら
の の部分を書き込む

・問題文で指定されている場合はそれを利用する
・指定が無い場合は自分で都合の良い方向を正とする
・一般的には運動の進行方向を正に取ると良いことが多い
・直線的な運動は1つ、平面的は2つ、立体的は3つの軸を
設定する

まず、モデルの設定の図を書く①作図をする

②軸を設定する

③物体に作用する
力の矢印を書き込む

④運動方程式を軸ごと
に立てる

力の見つけ方の手順は
1. 場の力 (主に重力)
2. 接触力
3. 慣性力
の順で探し出す

ma F= F

力学の問題を考える手順
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で積分dv F

dt m
=

v =

t

積分定数は初期条件が決める

で積分t

x =

力学の問題を考える手順

速度、変位を求める
どの物理量の関係が
必要か検討する

運動方程式を立てる
dv

m F
dt

=

解ける

解くことが困難

仕事とエネルギーの関係

力積と運動量の関係

モーメントと角運動量の関係

2

1

2 2

2 1

1 1

2 2

x

x

mv mv Fdx− = 

B Ap p Fdt− = 

( )
d

r p r F
dt

 = 

dL
N

dt
=

で積分t
で積分x

で外積r左側から

回転の運動方程式
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力学の講義を終えて

・剛体の運動
・慣性モーメント

・加速度 / 速度 / 変位
・ニュートンの運動の法則
・仕事とエネルギー
・エネルギー保存則
・運動量と力積
・運動量保存則
・力のモーメント
・角運動量
・角運動量保存則
・円運動
・単振動 / 単振り子
・万有引力の法則
・ケプラーの法則

取り扱った内容 取り扱っていない内容
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