
クーロン力〜ガウスの法則
任意の3次元空間中に点電荷

この点電荷から距離

E

が固定してある

[ m2 ]

電場の大きさを表すのに電気力線の本数を考える

Q
r

ここで電気力線について考える

と表せる

の位置の電場は

E = k
Q

r2

r
E = k

Q

r2

Q

電気力線も電場と同じ向きである

単位面積当たり 本の電気力線を引くとする

rQ

E = k
Q

r2

1

[ 本 ]

電気力線の密度を見ることで電場の大きさを
視覚的にとらえることができる

r
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この点電荷

この点電荷から3次元的に放射状に電気力線が
出ているので

から出る電気力線の総本数

[ m2 ]

形状に関する量
が含まれていない

Q

r半径

を求める

の球の面積を

2

2
4

Q
k r

r
= 

E = k
Q

r2

Q

とすると

ガウスの法則

1

帯電体の形状に関係ない

N

S

N E S= 

= 4pkQ [ 本 ]

電荷 から湧き出す電気力線の総本数Q [ 本 ]である4pkQ

r

E単位面積当たり 本の電気力線を引くとすると
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コンデンサー
2枚の平面金属極板を平行に設置したものを考える

金属板A電池は金属板Aの自由電子を金属板Bへ運ぶ

V

( A上の電荷とB上の電荷は引きあう為 )電池を切り離しても電荷は失われない

A,Bの電位差が電池の電位差と等しくなる

更に電池を接続し、図のような回路にした

-Q

+Q

金属板B

電気(電荷)を蓄える装置

金属板はそれぞれ正負に帯電

金属板に蓄えられる電気量は互いに大きさが等しく、異符号の電気量

自由電子の移動が止まる

181221-03



コンデンサー〜ガウスの法則

位置エネルギーと仕事の関係から

平面上の電荷なのでガウスの法則を考える

金属板A

E =
4pkQ

S

4pkQ
[ 本 ]

電気力線の総本数は 4pkQ

-Q

+Q

金属板B

[ 本 ]

、極板間隔を

とすると

であるから図のようになる

S

単位面積当たりの電気力線の本数は
電場の大きさに等しい

よって、コンデンサーの電極板の

電場の大きさは極板面積を

d

ここで、AB間の電位差を とするとV d

( ) ( )V B A E d = − = 

S

S

d

+Q

Q−

( )A

( )B
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C =
1

4pk

S

d

コンデンサー〜ガウスの法則

となる

従って、電場

真空中では「真空誘電率」

金属板A

E =
4pkQ

S
=
V

d
4pkQ

で表される

[ 本 ]

と表される

-Q

+Q

金属板B

に比例していることがわかります

キャパシタンス

は

e0

静電容量

蓄えられる電気量

この比例定数は

d

となり、AB間の電位差を

はQ

E

1

4

S
Q V

k d
= 

V

S

S

[ F ]
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コンデンサー〜静電エネルギー

極板間の電位差に逆らって電荷を運ぶのに仕事を要する

充電途中で電位差が

を充電するために要する仕事は

と表される

V

と表される

Q
Dq B

A

になったとき

式変形して

微小電気量

コンデンサーの極板に電荷が蓄えられる際

O
これをグラフで表すと、図の様になります

¢V

¢V

1

4

S
Q V CV

k d
=  =

V =
Q

C

Dq

DW = Dq ¢V
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コンデンサー〜静電エネルギー

V

となる

まで充電に要する全仕事は

Q
Dq B

A

従って、コンデンサーの静電エネルギーは

よって、電位差

O

V

¢V

U =
1

2
QV =

1

2
CV 2 =

Q2

2C

W =
1

2
QV
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コンデンサー

極板面積

クーロン定数

極板間距離

真空誘電率

電位差

蓄えられる電気量

静電エネルギー

静電容量

Q :

C :

V :

S :

d :

e 0 :

k :

U :

U =
1

2
QV =

1

2
CV 2 =

Q2

2C

Q =CV

C =
1

4pk

S

d
= e0

S

d
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2

2

0 0surface S

4
4

Q Q
EdS r

r


 
= =  =

クーロンの法則〜ガウスの法則
離れたところでの電場の大きさは点電荷

電場の球面

E = k
Q

r2
=

Q

4pe0r
2

電場

に対する積分はこれに球の表面積をかけたものでなくてはならない

から距離

であり、向きは点電荷から放射上になっている

従って、

Q

+Q

r

E単位面積当たり 本の電気力線を引く

S

球の表面積

全電気力線数
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クーロンの法則〜ガウスの法則

となる

電荷密度を で表すと

任意の閉曲面を考えた場合

閉曲面

面に対する法線単位ベクトル を導入すると

点電荷ではなく、任意の大きさの帯電体とし

S

 n

となるので、

 E

 n

0closed surface S

Q
E ndS


=  =全電気力線数

volume V

Q dV= 

r

0S V

1
E ndS dV


 = 

積分形のガウスの法則
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クーロンの法則〜ガウスの法則

上の任意の閉曲線

単位接線ベクトル

を考えたとき

が成立する

仕事量

上の微小距離

正電荷

定義より

途中で増えたり減ったりしない

を導入すると

から湧きだした電気力線は、負電荷に吸い込まれるまで

電気力線

Sここで、ある任意の閉曲面

C

0E tds =

 t

電気力線の保存

Q

：試験電荷が着目電荷から受ける力によって移動する道筋

C

正電荷

渦を作ることはない

から湧きだした電気力線は、正電荷のまわりに電気力線のQ

無渦条件

C

 t
 E
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0S V

1
E ndS dV


 = 

ガウスの法則〜積分形

内部電気量

正電荷のまわりに電気力線の渦はできない

比例定数は

電気力線の総数

C

0E tds =

以上をまとめると

を垂直に横切る電気力線の総数は内部電気量に依存し、

である

S任意の面

1

e 0
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ガウスの法則〜微小部分

近似式(テーラー展開)

斜線の２つの面に着目する

それぞれの位置での電場の成分を

と表すとする

N x

E電場

図のような直方体を考える

は

の面に垂直な成分は

x 方向に湧きだす電気力線の総数

x

y

z Dx

Dy

Dz

x0,y0,z0( )

 n  nEx

Ex x0( ) Ex x0 + Dx( )

Nx = Ex x0 + Dx( )DyDz- Ex x0( )DyDz
= Ex x0 + Dx( )- Ex x0( ){ }DyDz

=
¶Ex

¶x
Dx × DyDz

Ex x0 + Dx( )

» Ex x0( ) +
dEx x( )
dx

é

ë
ê

ù

û
ú
x=x0

× Dx

(参考) 181221-13



ガウスの法則〜微小部分

から湧き出す電気力線の総数

となる

よって、この直方体から湧きだす電気力線の総数

y,z方向については同様に、

微小体積

N

x

y

z Dx

Dy

Dz

x0,y0,z0( )

 n  n

DV

Ny =
¶Ey

¶y
Dy ×DxDz

Nz =
¶Ez

¶z
Dz × DxDy

N = Nx + Ny + Nz

=
¶Ex

¶x
+
¶Ey

¶y
+
¶Ez

¶z

æ

èç
ö

ø÷
DxDyDz

は

 
= Ñ×E( )DV

DV

(参考) 181221-14



ガウスの法則〜微小部分

であるから、

ここで、

となり、２つの式を比較すると

V に対しては任意の体積

 
N total = Ñ×E

V 

ò dV

0S V

1
E ndS dV


=  = 全電気力線数

 
E ×n

S 

ò dS = Ñ×E
V 

ò dV

 
Ñ×E

V 

ò dV =
1

e0

r
V 

ò dV

(参考) 181221-15



ガウスの法則〜微小部分

と表すことができる

被積分関数を比較すると

書きかえると

 
Ñ×E =

r

e0

 
div E =

r

e0

(参考) 181221-16



ガウスの法則〜微小部分
無渦条件についても微小部分を考えると

図のような微小な

長方形1周の電場に

x

y

z

Dx

Dy

x0,y0,z0( )

 t
ついて考える

 t x0 + Dx,y0,z0( )

x0,y0 + Dy,z0( )

Ex x0,y0 + Dy,z0( )

Ex x0,y0 ,z0( )成分では

A→B + B→C + C→D +D→Aのうち

x

A→B + C→D のみを考えればよく

BA

C
D

Ex x0,y0,z0( ) ×Dx -Ex x0,y0 + Dy,z0( ) ×Dx

= Ex x0,y0,z0( )- Ex x0,y0 + Dy,z0( ){ } ×Dx

(参考) 181221-17



ガウスの法則〜微小部分

成分ではy
B→C + D→A のみを考えればよく

= -
¶Ex

¶y
DyDx

= -
Ex x0 ,y0 + Dy,z0( ) - Ex x0,y0,z0( )

Dy
Dy

ì
í
î

ü
ý
þ
×Dx

Ey x0 + Dx,y0,z0( ) ×Dy- Ey x0,y0,z0( ) ×Dy

=
¶Ay

¶x
DxDy

= Ey x0 + Dx,y0,z0( )- Ey x0,y0,z0( ){ } ×Dy

=
Ey x0 + Dx,y0 ,z0( ) - Ey x0 ,y0 ,z0( )

Dx
Dx

ì
í
îï

ü
ý
þï
×Dy

(参考) 181221-18



ガウスの法則〜微小部分

成分として表すことができるの外積のとなり、Ñ

 
Ñ´ E( ) ×ndS

S

ò

全ての成分について計算をし、任意の面積

と書くことができる

S

と電場ベクトル

従って、

従って、長方形1周分は

 

¶Ey

¶x
-
¶Ex

¶y

æ

èç
ö

ø÷
DxDy = Ñ´ E( )

z
DxDy = Ñ´ E( )

z
DS

z E
に対して積分を行うと

 
E × t( )ds

C

ò = Ñ´ E( ) ×ndS
S

ò = 0

(参考) 181221-19



ガウスの法則〜微小部分

従って、

 Ñ´ E = 0

と表すことができる

が得られる

 rot E = 0

書きかえると

(参考) 181221-20



ガウスの法則〜微分形

微分形のガウスの法則

 Ñ´ E = 0

微分形の無渦条件

 
rot E = 0( )

 
Ñ×E =

r

e0  
div E =

r

e0

æ

èç
ö

ø÷

以上をまとめると

(参考) 181221-21



ガウスの定理〜ストークスの定理

 Aに対しても成立する

積分系と微分形を関連付けた式

ガウスの定理 (面積積分と体積積分の関係)

は一般のベクトル

 
E × t( )ds

C

ò = Ñ´ E( ) ×ndS
S

ò

 
E ×n

S 

ò dS = Ñ×E
V 

ò dV

 
A ×n

S 

ò dS = Ñ×A
V 

ò dV

 
A × t( )ds

C

ò = Ñ´ A( ) ×ndS
S

ò
ストークスの定理 (線積分と面積積分の関係)

(参考) 181221-22



ラプラスの方程式
微分形のガウスの法則

 
Ñ×E =

r

e0

に、電場と静電ポテンシャルの関係式

を適用し、成分を考えると

 E = -Ñf

=
¶

¶x
,
¶

¶x
,
¶

¶x

æ

èç
ö

ø÷
× -

¶f

¶x
,-
¶f

¶y
,-
¶f

¶z

æ

èç
ö

ø÷

 
Ñ×E =

¶

¶x
,
¶

¶x
,
¶

¶x

æ

èç
ö

ø÷
× Ex ,Ey ,Ez( )

=
¶

¶x
-
¶f

¶x

æ

èç
ö

ø÷
+
¶

¶y
-
¶f

¶y

æ

èç
ö

ø÷
+
¶

¶y
-
¶f

¶y

æ

èç
ö

ø÷

(参考) 181221-23



ラプラスの方程式

が得られる

従って、

をここで、演算子

ポアソンの式 (静電ポテンシャルと電荷の関係式)

従って、

 
Ñ×E = -

¶2

¶x2
+
¶2

¶y2
+
¶2

¶z2

æ

èç
ö

ø÷
f

Ñ2

と定義すると

Ñ2 =
¶2

¶x2
+

¶2

¶y2
+

¶2

¶z2

 Ñ×E = -Ñ2f

Ñ2f = -
r

e0

Ñ2：ラプラシアン

特に、真空中に電荷が存在しない場合

Ñ2f = 0 ラプラスの方程式

(参考) 181221-24



ガウスの法則〜ポイント

[ 本 ] ある

全電気力線数

[ 本 ] とする

全面積

+Q

ガウスの法則は

ガウスの約束事

単位面積当たりの本数

E S= 

例えば、半径
V

Q dV V = = 

単位面積あたりの電気力線の本数をE

2

0

1

4

Q
S

r
= 

r の球を閉曲面としたら

2

2

0 0

1
4

4

Q Q
r

r


 
=  =

cosnE E n E n =  =

即ち、
Q

e0

の電荷から出てくる全電気力線数は+Q

0

Q
E S


 =

と書ける

注意点

・電荷 (電気量) は点電荷でない場合は

体積密度 :

・ は電場の大きさだが、面に垂直な成分

面密度 :

線密度 :

全電気力線数

S
Q dS S = = 

l
Q dl l = = 

Surface

nE ndS E S = 

0Surface Volume

1
E ndS dV


=  = 

nE S
0

1


=  全電気量



全電気力線数

E

r

s

r

一般化

 n  En

 E
q

電場が求められる
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ガウスの法則〜例題
図のように、半径Rの球の内部に単位体積あたり電気量r(> 0)の荷電粒子が
一様に分布しているとする。

以下の問に答えよ。

(1) この球の中心から距離 ( )r R での電場の大きさ を求めよ。E r( )

(2) この球の中心から距離 r(£ R)での電場の大きさ を求めよ。E r( )
(3) 球の内外につくる静電場を距離 rの関数としてグラフを書け。

R

o

r
r
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ガウスの法則〜線電荷

x

である無限に長い直線上の電荷がある。

A

但し、線の太さは無視できるものとする。

単位長さあたりの電気量(線密度)がr
にある点Aでの電場の大きさを求めよ。R

z

o

直線から距離

R
r
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ガウスの法則〜面電荷

で一様に電荷が分布しているとする。この平面上に面密度

この平面から距離

a

s

無限に広い平面がある。

だけ離れた点での電場の大きさを求めよ。

とする。

a
但し、真空誘電率は

s

e0
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ガウスの法則〜円筒

z

の無限に長い円筒の表面に単位長さ当たり

一様に分布している。

(1) 円筒の外側

r図のような半径 a

a

(2) 円筒の内側

の電荷量が

xo

r

( )z a

z(£ a)

に生ずる電場を求めよ。

に生ずる電場を求めよ。

181221-29




