
クーロン力〜ガウスの法則

[ 𝐦𝟐 ]

電場の大きさを表すのに電気力線の本数を考える

ここで電気力線について考える

と表せる
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電気力線の密度を見ることで電場の大きさを
視覚的にとらえることができる
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任意の𝟑次元空間中に点電荷 𝑸が固定してある
この点電荷から距離 𝒓の位置の電場は

単位面積当たり 𝑬本の電気力線を引くとする
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ガウスの法則

1

帯電体の形状に関係ない
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= 4pkQ [ 本 ]
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この点電荷 𝑸から出る電気力線の総本数 𝑵を求める
この点電荷から𝟑次元的に放射状に電気力線が出ているので

単位面積当たり 𝑬 [本] の電気力線を引くとすると
電荷 𝑸から湧き出す電気力線の総本数 𝟒𝝅𝒌𝑸 [ 本 ]である

形状に関する量 𝒓
が含まれていない

[ 𝐦𝟐 ]

半径 𝒓の球の面積を 𝑺とすると



𝐀, 𝐁の電位差が電池の電位差と等しくなる

コンデンサー

金属板𝐀

V
-Q

+Q

金属板𝐁
金属板はそれぞれ正負に帯電

自由電子の移動が止まる
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𝟐枚の平面金属極板を平行に設置したものを考える
更に電池を接続し、図のような回路にした

電池は金属板𝐀の自由電子を金属板𝐁へ運ぶ

電池を切り離しても電荷は失われない (𝐀上の電荷と𝐁上の電荷は引き合う為)
電気(電荷)を蓄える装置
金属板に蓄えられる電気量は互いに大きさが等しく、異符号の電気量



コンデンサー〜ガウスの法則
平面上の電荷なのでガウスの法則を考える

金属板𝐀
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金属板𝐁

単位面積当たりの電気力線の本数は
電場の大きさに等しい
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電気力線の総本数は 𝟒𝝅𝒌𝑸 [ 本 ]
であるから図のようになる

よって、コンデンサーの電極板の
電場の大きさは極板面積を 𝑺とすると

ここで、𝐀𝐁間の電位差を 𝑽 、極板間隔を 𝒅とすると
位置エネルギーと仕事の関係から
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コンデンサー〜ガウスの法則

となる
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と表される
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となり、𝐀𝐁間の電位差 𝑽に比例していることがわかります
この比例定数は

従って、電場 𝑬は

蓄えられる電気量 𝑸は

真空中では「真空誘電率 𝜺𝟎 」で表される



コンデンサー〜静電エネルギー

極板間の電位差に逆らって電荷を運ぶのに仕事を要する

と表される

V

と表される

Q
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式変形して

コンデンサーの極板に電荷が蓄えられる際
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これをグラフに表すと、図の様になります
充電途中で電位差が 𝑽′になったとき
微小電気量 ∆𝒒を充電するために要する仕事は

𝐁

𝐀



コンデンサー〜静電エネルギー
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となる
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よって、電位差 𝑽まで充電に要する全仕事は
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𝑸 :蓄えられる電気量

𝑪 :静電容量

𝑽 : 電位差

𝑺 : 極板面積

𝒅 : 極板間距離

𝜺𝟎 : 真空誘電率

𝒌 : クーロン定数

𝑼 :静電エネルギー
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クーロンの法則〜ガウスの法則
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電場

であり、向きは点電荷から放射上になっている

従って、

+Q

球の表面積

全電気力線数

210108-09

電場の球面 𝑺に対する積分はこれに球の表面積をかけたものでなくてはならない

単位面積当たり 𝑬本の電気力線を引く

点電荷 𝑸から距離 𝒓離れたところで電場の大きさは



クーロンの法則〜ガウスの法則

となる

閉曲面 S

 n

となるので、
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0closed surface S

Q
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=  =全電気力線数

volume V
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0S V

1
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
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積分形のガウスの法則
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点電荷ではなく、任意の大きさの帯電体とし
電荷密度を 𝝆で表すと

任意の閉曲面を考えた場合
面に対する法線単位ベクトル 𝒏を導入すると



クーロンの法則〜ガウスの法則

が成立する

仕事量

上の微小距離

定義より

電気力線

C

0E tds =

電気力線の保存

：試験電荷が着目電荷から受ける力によって移動する道筋

無渦条件

C

 t
 E
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正電荷 𝑸から湧き出した電気力線は、正電荷のまわりに電気力線の
渦を作ることはない

ここで、ある任意の閉曲面 𝑺上の任意の閉曲面 𝑪を考えたとき

単位接線ベクトル റ𝒕を導入すると

正電荷 𝑸から湧き出した電気力線は、負電荷に吸い込まれるまで
途中で増えたり減ったりしない
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ガウスの法則〜積分形

内部電気量

正電荷のまわりに電気力線の渦はできない

電気力線の総数

C

0E tds =

以上をまとめると
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任意の面 𝑺を垂直に横切る電気力線の総数は内部電気量に依存し、

比例定数は
𝟏

𝜺𝟎
である



ガウスの法則〜微小部分

近似式(テーラー展開)

と表すとする
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(参考) 210108-13

図のような直方体を考える
斜線の𝟐つの面に着目する

電場 𝑬の面に垂直な成分は 𝑬𝒙
それぞれの位置での電場の成分を

𝒙方向に湧き出す電気力線の総数 𝑵𝒙は



ガウスの法則〜微小部分

となる
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(参考) 210108-14

同様に、𝒚, 𝒛方向については

よって、この直方体から湧き出す電気力線の総数 𝑵は

微小体積 ∆𝑽から湧き出す電気力線の総数



ガウスの法則〜微小部分

であるから、

ここで、
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(参考) 210108-15

任意の体積 𝑽に対しては

となり、𝟐つの式を比較すると



ガウスの法則〜微小部分

と表すことができる

被積分関数を比較すると

書きかえると
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(参考) 210108-16



ガウスの法則〜微小部分
無渦条件についても微小部分を考えると
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(参考) 210108-17

𝒙成分では
𝐀 → 𝐁 + 𝐁 → 𝐂 + 𝐂 → 𝐃+ 𝐃 → 𝐀のうち
𝐀 → 𝐁 + 𝐂 → 𝐃のみを考えればよく

図のように微小な
長方形𝟏周の電場に
ついて考える



ガウスの法則〜微小部分
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(参考) 210108-18

𝒚成分では
𝐁 → 𝐂 + 𝐃 → 𝐀のみを考えればよく



ガウスの法則〜微小部分
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と書くことができる

従って、
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(参考) 210108-19

となり、𝛁と電場ベクトル 𝑬の外積の 𝒛成分として表すことができる
全ての成分について計算し、任意の面積 𝑺に対して積分を行うと

従って、長方形𝟏周分は



ガウスの法則〜微小部分

従って、

 Ñ´ E = 0

と表すことができる

が得られる

 rot E = 0

書きかえると

(参考) 210108-20



ガウスの法則〜微分形

微分形のガウスの法則

 Ñ´ E = 0

微分形の無渦条件
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以上をまとめると

(参考) 210108-21



ガウスの定理〜ストークスの定理
積分系と微分形を関連付けた式

ガウスの定理 (面積積分と体積積分の関係)

 
E × t( )ds

C

ò = Ñ´ E( ) ×ndS
S

ò

 
E ×n

S 

ò dS = Ñ×E
V 

ò dV

 
A ×n

S 

ò dS = Ñ×A
V 

ò dV

 
A × t( )ds

C

ò = Ñ´ A( ) ×ndS
S

ò
ストークスの定理 (線積分と面積積分の関係)

(参考) 210108-22

は一般のベクトル 𝑨に対しても成立する



ラプラスの方程式
微分形のガウスの法則
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r

e0

に、電場と静電ポテンシャルの関係式
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(参考) 210108-23



ラプラスの方程式

が得られる

従って、

ポアソンの式 (静電ポテンシャルと電荷の関係式)

従って、
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と定義すると
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Ñ2：ラプラシアン

特に、真空中に電荷が存在しない場合

Ñ2f = 0 ラプラスの方程式

(参考) 210108-24

ここで、演算子 𝛁𝟐 を



ガウスの法則〜ポイント

全電気力線数

全面積

+Q

ガウスの法則は

ガウスの約束事
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と書ける

注意点

・電荷 (電気量) は点電荷でない場合は

全電気力線数
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一般化

 n  En

 E
q

電場が求められる

210108-25

体積密度 : 𝝆

面密度 : 𝝈

線密度 : 𝝆

例えば、半径 𝒓の球を閉曲面としたら

即ち、+𝑸の電荷から出てくる全電気力線数 ൗ𝑸 𝜺𝟎 [ 本 ] はある

単位面積当たりの本数

・ 𝑬は電場の大きさだが、面に垂直な成分単位面積当たりの電気力線の本数を 𝑬 [ 本 ]とする



ガウスの法則〜例題
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図のように、半径 𝑹の球の内部に単位体積あたり電気量 𝝆 > 𝟎 の荷電粒子が
一様に分布しているとする。
以下の問に答えよ。

(1) この球の中心から距離 𝒓 ≥ 𝑹 での電場の大きさ 𝑬 𝒓 を求めよ。

(2) この球の中心から距離 𝒓 ≤ 𝑹 での電場の大きさ 𝑬 𝒓 を求めよ。

(3) 球の内外につくる静電場を距離 𝒓の関数としてグラフに表せ。



ガウスの法則〜線電荷
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210108-27

単位長さあたりの電気量(線密度)が 𝝆である無限に長い直線上の電荷がある。
直線から距離 𝑹にある点𝐀での電場の大きさを求めよ。
但し、線の太さは無視できるものとする。



ガウスの法則〜面電荷

a

s

210108-28

無限に広い平面がある。
この平面上に面密度 𝝈で一様に電荷が分布しているとする。
この平面から距離 𝒂だけ離れた点での電場の大きさを求めよ。
但し、真空誘電率は 𝜺𝟎 とする。



ガウスの法則〜円筒

z
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図のような半径 𝒂の無限に長い円筒の表面に単位長さ当たり 𝝆の電荷量が
一様に分布している。

(1) 円筒の外側 𝒛 ≥ 𝒂 に生ずる電場を求めよ。

(2) 円筒の内側 𝒛 < 𝒂 に生ずる電場を求めよ。


