
これまでの講義では「電荷が静止状態」の現象について検討をしてきました。
所謂、「静電現象」と呼ばれる現象です。

ここではこの電荷が動いた場合について検討していきます。
電荷が動くと流れができます。この流れを「電流」と呼びます。
電荷の流れが一定の場合は「定常電流」と呼びます。

電荷の流れである「電流」を定義は
「任意の導線断面を単位時間あたりに通過する量」となります。



従って、電流 𝑰の定義として
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となります。



一般的な導線内を通過する電流について考えます。
ここで、「単位面積あたりの電流 റ𝒊を電流密度と定義」します。

導線内のある断面積 𝑺を通過する電流 𝑰の大きさを考えます。
電流密度 റ𝒊は断面積 𝑺を通過する際に様々な大きさや向きがあります。
この時、断面積 𝑺を通過する量としてカウントするのは面に対して垂直な成分のみに
なります。
よって、断面積 𝑺を通過する電流の大きさ 𝑰は
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となります。



つまり、電流 𝑰は電流密度 റ𝒊と断面積 𝑺の内積で表すことが出来ます。

導線の出口を断面積 𝑺𝟏 とし、入り口を断面積 𝑺𝟐 とすると

となります。
ざっくり言うと
「断面積 𝑺𝟐で入った分と断面積 𝑺𝟏で出た分の量は同じ」となります。
これは「電荷保存則」から言えるのですが、
この法則は今の処、反例が見つかっていなく経験的事実から成り立つ法則となっています。
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この法則を任意の閉曲面を考えて表すと
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となります。
これを「電流の保存則」と言うのですが、
「ある閉曲面 𝑺を通過した電流 𝑰は入った量と出た量は同じ」という
当たり前のことと思われる現象を数式として表しただけです。



この法則を任意の閉曲面を考えて表すと

まずは各自でやってみて下さい。

有効数字は2桁あれば十分でしょう。



この法則を任意の閉曲面を考えて表すと

(1) 電流密度は「単位面積あたりの電流を電流密度と定義」されるので
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となります。
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(2) 電流 𝑰𝟎は
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ここでは電流の種類について紹介しておきます。

電流が時間的に変化しない状態の電流を「直流(電流)」といいます。
電流が時間的に変化し、その変化が周期的に変動する状態の電流を
「交流(電流)」といいます。

日本の家庭用電源は振動数 𝒇が 𝟓𝟎 𝐇𝐳と 𝟔𝟎 𝐇𝐳の2種類ある状態です。
これが、東日本大震災の時に電力不足の状態に陥った原因の一つでもあります。
被災していない地域からの電力の融通が簡単ではないからになります。
この差は歴史的な問題で、明治の頃に電気を作る発電機を外国から輸入した時
「東京はドイツ製( 𝟓𝟎 𝐇𝐳 )」を導入し「大阪はアメリカ製( 𝟔𝟎 𝐇𝐳 ) 」を導入しました。
これが近隣地域に広がり、東日本と西日本の周波数の違いとなった訳です。



話を戻すと、交流は「時間的、周期的に変動」するのでこれを関数で表すと

となり、三角関数で表しています。
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( ) ( ) = −V A B

続いて、有名な「オームの法則」の話をしていきます。

電流とは「電荷の流れ」です。よって、電荷が動いてもらう必要があります。
電荷は何もない状態では動きません。電荷を動かすためには「電位差」が必要になります。
電荷は高い電位から低い電位へ移動します。
電位差 𝑽を𝟐点間の電位差として表すと

となります。
電流の大きさ 𝑰 と電位差 𝑽は比例関係にあり、その比例定数を 𝑹とすると
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電位差 𝑽は

となります。
この式が「オームの法則」と呼ばれるものになります。

比例定数 𝑹は電位差 𝑽が一定とすると

𝑹 →大きく 𝑰 →小さく
𝑹 →小さく 𝑰 →大きく

という関係にあり、これは電流の流れにくさの度合いを表すことになるので
比例定数 𝑹を「抵抗」と呼びます。

抵抗の定義として
「電位差 𝟏 𝐕の電極間を 𝟏 𝐀の電流が流れるときの電気抵抗を 𝟏 𝛀とする」
となります。
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一様な物質で作られた抵抗線(導線)を考えたとき、
抵抗は「流れにくさの度合い」を表しているので
「抵抗線の長さ 𝒍に比例」し「導線の断面積 𝑺に反比例」すると考えられます。
従って、比例定数を 𝝆と記述すると、

と表されます。比例定数 𝝆は「電気抵抗率」と呼ばれる値です。
また電気抵抗率 𝝆の逆数と取って 𝝈 とし、𝝈を「電気伝導率」と呼びます。
電気抵抗率 𝝆も電気伝導率 𝝈も物質に依存する定数となります。



導線に対して考えたオームの法則を導線内の微小部分に対して検討します。

導線内の微小部分の直方体を考えます。
そして、直方体の断面積を通過する電気の量を計算します。
電流密度が 𝒊とすると微小断面積 𝚫𝑺を通過する電気の量 𝑰は
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と表されます。



従って、微小導体の電気抵抗 𝑹は
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と表されます。
微小部分内の電場の大きさ 𝑬は ∆𝝓 = 𝑬 ∙ ∆𝒍より
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と表され、これを「一般化されたオームの法則」と呼びます。
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オームの法則はオームによって実験的に得られた式です。
しかし、後に電子が発見され、理論的に解釈が出来るようになりました。

ここでは簡単なモデルを使ってオームの法則を検討してみましょう。
抵抗線を設定し、任意の断面 𝑺を単位時間に通過する量を考えます。

電子の平均の速さを 𝒗 とし、抵抗線内の電子の密度を 𝒏すると
単位時間に断面 𝑺を通過する電子の個数 𝑵は
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と表されます。



電子𝟏個当たりの電気量を −𝒆 とすると電流 𝒊の大きさは

と表されます。
電子は一定の速さ 𝒗で運動しているが、
これは「電場により電子に作用する力」と「速度比例の抵抗力」がつりあっていると考えます。
従って、
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が成り立ちます。



電場 𝑬の大きさは
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となります。
これを電流の式に代入し整理すると

なので電子の速さ 𝒗は
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電位差 𝑽 として表すと

と記述され、オームの法則が成立していることが確認できます。
前述の様に「長さ 𝒍に比例し、断面積 𝑺に反比例」していることも確認できます。
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電子の運動により仕事が生じます。
電位差 𝑽があり、電荷 𝒒が移動する場合

( ) ( ) = − =  W q A B qV

となります。

となります。
従って仕事率 𝑷は
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この問題はレポート課題の1つとして扱う予定なのでここでは解答はしません。



ここからは電位差を作る装置「電源」を用いた回路について検討していきます。

「電源」は低電位から高電位に電荷を持ち上げる仕事をしています。
図のような抵抗 𝑹𝟏, 𝑹𝟐が取り付けられた回路を例に考えてみましょう。

点𝐚をスタート地点として、電源で電位が高電位になり、
抵抗 𝑹𝟏で仕事をし電位が下がり、抵抗 𝑹𝟐で仕事をし
さらに電位がさがります。そして点𝐚まで戻ってきます。
このとき、起電力で上がった電位と2つの抵抗で下がった電位は等しく
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となります。



ここで電流についての法則を紹介しておきます。
この法則は「電流の保存則」を回路に適用した形になります。

「回路の分岐点に流れ込む電流の代数和は𝟎である」という法則で
「キルヒホッフの第1法則」と呼ばれています。

さらに、任意の回路について閉回路を考え、その閉回路を1周すると
「起電力の総和 =抵抗に依る電圧降下の総和」となります。
これを「キルヒホッフの第2法則」と呼びます。



キルヒホッフの第1法則の一般化を考えます。

任意の閉曲面 𝑺を考え、閉曲面内の電荷密度を 𝝆とすると

= VQ dV

となります。

となります。
閉曲面 𝑺から出入りする電流密度を 𝒊とし、微小面積 𝚫𝑺を考えると
微小面積 𝚫𝑺を通過する電荷の量は
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従って、電荷量の時間変化
𝒅𝑸

𝒅𝒕
は
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と表されます。
ここで、ガウスの定理を用いると上式は
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この式は任意の閉曲面で成立するので

となります。これを「電流と電荷の連続方程式」と呼びます。
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ここでは𝐑𝐂回路のモデルについて考えます。

図の回路において、起電力 𝑽で電位が上がり、抵抗 𝑹で電位が 𝑹𝑰下がり、

さらにコンデンサー 𝑪で電位が
𝑸

𝑪
下がります。

従って、キルヒホッフの法則(第2)より

となります。
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さらに式変形をし「電圧降下の総和 =起電力の総和」の形で表すと

となります。
この式を「回路方程式」と呼びます。
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ここで回路のコンデンサーに着目すると、コンデンサーの電気量 𝑸 𝒕 は

となります。
この式の両辺を 𝒕で微分すると
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従って回路方程式は

となります。
この式は電気量 𝑸に関する微分方程式になっています。
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となります。
初期条件 𝑸 𝟎 = 𝟎より定数 𝑨を求めると

回路方程式は

を解くと、一般解は
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となります。
指数の分母にある「𝐑𝐂」は「回路の時定数」と呼ばれる定数になります。

グラフの概形は図のようになり、 𝑪𝑽に漸近する振る舞いとなります。

初期条件を代入すると

となり、一般解は
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回路方程式の両辺に電流 𝑰 =
𝒅𝑸

𝒅𝒕
をかけると

となります。この式の形からコンデンサーの静電エネルギーも確認できます。
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この問題はレポート課題の1つとして扱う予定なのでここでは解答はしません。



今回の宿題と同じ問題です。

まずは各自でやってみて下さい。


