
最終回である今回は「磁場」について説明していきます。
授業回数が1回分しかないのでポイントを絞って扱っていきます。

まずは身近にある磁場を生成する物質として「磁石」が挙げられると思います。
磁石は「鉄を引きつける」性質を持っています。
また、磁石には「𝑵極と𝑺極」に分かれていることもよく知られています。
磁石は端に行くほど磁力が強く、先端を「磁極」と呼びます。

この磁極を活用したものが「方位磁針」になります。

磁場には磁石以外にも「電流」によっても生じます。
この例として図にあるように、電流の側に置かれた方位磁針の針が振れる現象があります。



さらに、身近な大きな磁石として「地球」があります。

地球は北極部分が「𝑺極」に、南極部分が「𝑵極」になっています。
「あれ？」と思う人もいるかも知れませんが、
「𝑺極と𝑵極が引かれ合うので𝑵極が北極に引かれる」訳です。

図に描かれている赤い線は「磁力線」になります。
「電気力線」の場合と同様に「正極(𝑵極)からでて負極(𝑺極)に向かう」ものになります。

地球の磁場は場所によって異なり、東京付近だと 𝟒. 𝟔 × 𝟏𝟎−𝟓 𝐓ぐらいになります。



電場を生じさせている「電荷」の場合とは異なり、
磁場を生じさせる「磁荷」は発見されていません。
電荷の場合は「正電荷」と「負電荷」に分かれ、「単体の電荷」として存在しています。
しかし、磁場の場合はそうはなりません。

例えば、磁石を𝑵極と𝑺極の境目で切断したとしても、
切断したそれぞれに𝑵極と𝑺極ができてしまいます。
これを繰り返し、原子レベルまで分割したとすると次のようなモデルに行き着きます。

「原子核に束縛された1個の電子がつくるループ電流」になります。
これが最も小さな磁石となる訳です。
結論として、「全ての磁場は電流から生じる」と言えます。
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電場に関するガウスの法則



ここで電場中や磁場中における電荷の運動について検討しておきます。

電場がある空間ではクーロン力が働きます。

従って、電荷 𝒒に作用する電場に依る力 𝑭𝑬は

=EF qE

と表されます。
磁場については
「運動する電荷は磁場から電荷量 𝒒と速度 𝒗の積に比例する力を受ける」ことを
ローレンツが発見しました。この力を「ローレンツ力」と呼びます。



ローレンツ力の特徴として

「作用する力の方向が速度 𝒗と磁場 𝑩のいずれにも垂直」になります。
従って、これをベクトルの外積を使って表すと

( )= + = + E BF F F q E v B

と表されます。

これらを合わせると電荷を帯びている粒子が電場 𝑬 , 磁束密度(磁場) 𝑩の中を速度 𝒗で

運動するときに受ける力 𝑭は

= BF qv B

と表されます。



ここで、電流において電流の微小部分「電流素片」を考え、
電流素片が磁場から受ける力を検討してみましょう。
電流素片はイメージとしては電荷における「点電荷」に相当するものと考えて下さい。

すると、電流の向きに速度 𝒗が含まれているのでローレンツ力を考えると

「𝑰𝒅𝒔」と「𝑩」に垂直な方向に電流素片が受ける力「𝒅𝑭」が作用すると考えられます。



磁場 𝑩の強さを表す量として𝑯を導入します。

磁場 𝑩 との関係は

0=B H

と表され、 𝝁𝟎 を「真空透磁率」と呼びます。
磁場の定義として
「𝟏 𝐓の磁場とは、磁場に直行する 𝟏 𝐀𝐦の電流素片が 𝟏 𝐍の力を受けるような大きさ」
となります。



磁力線については電気力線と似た性質があります。
類似点と相違点を理解しておきましょう。

・磁力線の向きは磁場の向き

・磁石のまわりの磁力線は、𝑵極から出て𝑺極に向かう

・極から出入りする磁力線の本数は磁極の強さに比例する

・単位面積当たりの磁力線の本数は、その点での磁場の強さに比例する

・ 1本の磁力線は短くなろうとし、隣り合う磁力線は離れようとする。



ここで、具体例を用いて電流が磁場から受ける力がどのようになるのか検討してみましょう。

図は𝐔字型磁石の一部になります。
まず、磁石に依る磁場は𝑵極から𝑺極に向かうので上から下に磁場が生成されます。
次に、導線を流れる電流が作る磁場は導線を中心に同心円状に磁場が生成されます。
今回の例では、電流は手前から奥に向かっているので
「右ねじの法則」により磁場の向きは時計回りになります。
この2つが合わさった状態が下の図になります。



このような状態を表す法則として「フレミング左手の法則」があります。

すると、磁場は上から下、電流は手前から奥となるので力は右から左へ作用する
ことがわかります。
紙の上で当てはめようとすると手首が痛くなるかもしれませんが、
実際に自分の左手をつかって確認して見て下さい。



前のスライドで出てきた電流の微小部分「電流素片」について、
今度は電流素片自体が生成する磁場について検討してみましょう。

フランスのビオとサバールが数式として表すことに成功したので
「ビオ –サバールの法則」と呼ばれています。

電流素片 𝑰𝒅𝒔が位置ベクトル 𝒓の地点に作る磁場 𝒅𝑩は

0

24






=

Ids r
dB

r r

と表されます。



向きは図のような例では手前から奥になります。

ビオ-サバールの法則は電場におけるクーロンの法則の使い方に
似たイメージとなります。
微小部分を考え、後で全区間積分という流れになります。



一方、「アンペールの法則」は電場におけるガウスの法則に似た運用になります。

アンペールの法則は

「定常電流が流れている系において、磁束密度ベクトル(磁場) 𝑩を周回積分した値は
積分路をくぐる電流 𝑰に真空透磁率 𝝁𝟎 を掛けた値に等しい」
式で表すと

と表されます。



具体例として、直線電流がつくる磁場のモデルを考えてみましょう。

電流から 𝒓離れた地点での電場は

左辺について、閉曲線として半径 𝒓の円を考え、
磁場 𝑩で線積分すると「 𝑩 ∙ 𝟐𝝅𝒓 」となります。
これが、閉曲線を貫く電流の総量 × 𝝁𝟎 であるから「 𝝁𝟎𝑰 」となります。
従って

と表されます。
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別の有名な具体例として、円形電流がつくる磁場のモデルを考えてみましょう。

この場合はアンペールの法則を適用するのは難しく、
ビオ –サバールの法則を用いることになります。
計算についてはここでは触れず、結果だけ押さえておきましょう。

と表され、半径 𝒓に反比例し電流 𝑰に比例する値となります。
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前のスライドのモデル、「円形電流がつくる磁場のモデル」が複数重なり合ったものが
「ソレノイドコイル」と呼ばれるものになります。

磁場の大きさは電流と巻数に比例します。

磁場の向きは右ねじの法則に従います。
電流の向きがどのような設定であるか注意しましょう。



最後に「ファラデーの電磁誘導の法則」を紹介しておきます。
これは、𝐌𝐚𝐱𝐰𝐞𝐥𝐥の方程式の2番目の式になります。

ファラデーによって「磁束の変化が電流を生む」という現象が発見されました。

言い換えると「磁場 𝑩が時間的に変化すると電場 𝑬が生じる」となります。

式で表すと

となります。



最終回、磁場についてはかなり駆け足になりましたが、
これで電磁気学の分野も学習したことになります。
取り扱っていない分野もあるので、興味があったら学習してみて下さい。

最後に、Maxwellの方程式をもう一度確認しておきましょう。
1番目の式から3番めの式、それと4番目の式の一部を学習しています。
一部というのは、今回は磁場が一定の話までだったのですが、
4番目の式は時間変化もさらに加わっています。
4番目の式は「アンペール –マクスウェルの法則」と呼ばれる式になります。


