
今回からは「運動方程式から導かれる関係」について解説していきます。
スライドには運動方程式から導かれる3種類の関係を記述しています。
この3種類の関係式を学び終わった後、さらに運動方程式の重要さとニュートンさんの
偉大さを感じられると思います。
改めて「力学は運動方程式である」と感じることと思います。

そこで今回は「仕事とエネルギーの関係」について説明します。
残りの2つは次回と次々回に扱う予定です。



一般的に使われている「仕事」とは異なり、物理では「力がする働き」を「仕事」と言います。
詳しく言うと「物体に力を加えて物体を移動させること」を「仕事」とします。

従って、「力 𝑭 」と「変位 𝒙 」が重要になります。

図の様な直線上を物体に力 𝑭を加えて変位 𝒙させたとします。
このとき、の仕事𝑾は

| || |= =W F x Fx

と表します。

この仕事は「力 𝑭が物体に仕事𝑾 した」や「物体は力 𝑭に仕事𝑾をされた」と言われます



仕事の次元は

仕事の単位「𝐉ジュール」をMKS単位系で表すと
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前のスライドの例では作用する力が 𝒙軸に沿っていましたが、
このスライドの例は作用する力が軸に対して角度 𝜽を持っています。
この場合の仕事はどう扱うかと言えば、
仕事の大原則として「移動方向と同じ成分の力しか仕事とみなされない」ことになっています。

従って、この図の場合は「力 𝑭の 𝒙軸に沿った成分」を
取り出しその成分を仕事の力とします。
従って仕事𝑾は

cos cos =  =W F x Fx

となります。



ここで、初回授業のベクトルの内積を思い出してください。
この2つの状態を一つで表すのに役立つのが「内積」になります。

| || | cos=  =W F x F x

となります。この式を「仕事の定義」とします
この式の有用なことは、仕事の正負はなす角 𝜽で決まるところになります。

変位 𝒙と力 𝑭のなす角 𝜽が 𝟎°から 𝟗𝟎°の間は 𝐜𝐨𝐬𝜽の値は正であり、
𝟗𝟎°から 𝟐𝟕𝟎°の間は 𝐜𝐨𝐬𝜽の値は負であり、
𝟐𝟕𝟎°から 𝟑𝟔𝟎°の間は 𝐜𝐨𝐬𝜽の値が正となります。
従って、「負の仕事はどうだったか？」と悩むこと無く、

変位 𝒙と力 𝑭のなす角 𝜽だけ着目すれば良いことになります。



ここで、仕事を3次元空間に拡張して考えてみましょう。

点𝐀𝐁間のある場所での微小変位 𝒅𝒓を考え、その間、力 𝑭が作用していたと考えます。
このときの微小仕事 𝒅𝑾は

cos= = dW F dr F dr

となります。
これを𝐀𝐁間すべてについて行えばよく、これは移動した曲線に沿っての積分になります。

この様な積分を「線積分」と呼びます。

= cW F dr

微小部分を考えて
積分する手法は
物理でよく使います



さて、それでは本題に入ります。
運動方程式から「仕事とエネルギーの関係式」を導いて行きましょう。

運動方程式

の両辺に 𝒅𝒓の内積を取って積分します。

=
dv

m F
dt



この時点で右辺は前のスライドの微小仕事に相当しています。
これを全区間に対して足し合わせる、即ち、積分することになります。

ここで速度の定義 𝒗 =
𝒅𝒓

𝒅𝒕
より

と書き換えられます。

更に左辺を「
𝒅

𝒅𝒕
の形」でまとめると

 = 
dv

m dr F dr
dt
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ここで、何故「
𝒅

𝒅𝒕
の形」でまとめるかと言えば、

物理では「時間変化」が重要になります。
従って、時間の微分の形でまとめておけば
その「まとめられた量は物理的に意味のある量」になります。

ここでまとめられている量である「
𝟏

𝟐
𝒎𝒗𝟐 」は「運動エネルギー 𝑲 」と呼ばれる

物理量になります。

だから、質問で「何で運動エネルギーは
𝟏

𝟐
𝒎𝒗𝟐 と表すのですか？」という問いにの回答は

「運動方程式を変形し、時間微分の形を作った結果
𝟏

𝟐
𝒎𝒗𝟐 となった」と言える訳です。

この式変形については後のスライドで解説します。



話を運動方程式に戻します。

ここで初期条件として

となります。

運動エネルギーの
変化量 ∆𝑲

と設定すると、この積分は
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運動エネルギーの
変化量 ∆𝑲
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となります。
この式が「仕事とエネルギーの関係式」に
なります。
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前のスライドで一般的な3次元での導出を行いました。
しかし、多くの場合は1次元に落とし込んで考えることになります。
つまり、これまでと同様に「軸ごとに考えれば良い」ことになります。
そこで、ここでは1次元( 𝒙軸)として扱ってみましょう。

運動方程式

の両辺を 𝒙で積分します。

=
dv

m F
dt



よって

となります。
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初期条件
𝒕 = 𝒕𝟏で 𝒙 𝒕𝟏 = 𝒙𝟏, 𝒗 𝒕𝟏 = 𝒗𝟏
𝒕 = 𝒕𝟐で 𝒙 𝒕𝟐 = 𝒙𝟐, 𝒗 𝒕𝟐 = 𝒗𝟐
と設定すると
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ここで、作用する力 𝑭が一定であるとすると
右辺の積分が容易にでき、

( )

( )

 
2

2

1

1

21

2

 
= 

 

v t
x

x
v t

mv Fx

( ) ( ) ( )2 2

1 2 2 1

1 1

2 2
− = −mv t mv t F x x

( )2 2

2 1 2 1

1 1

2 2
− = −mv mv F x x

運動エネルギーの
変化量 ∆𝑲

となります。

外力の仕事



式変形について示しておきます。

左辺の
𝒅𝒗

𝒅𝒕
∙ 𝒗の部分を作り出す為にを

𝒅

𝒅𝒕
𝒗 ∙ 𝒗 考えます。
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 =  m dtv
t

F
d

d
v

r
d



一方、この微分を展開すると(合成関数の微分)

となります。
内積の掛ける順は可換なので展開した2つの項は同じものになります。
2つの計算でも元は同じものなので

と書き換えられます。ここの計算は少し難しいのでしっかりと手を動かしてやってみて下さい。
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一方、この微分を展開すると(合成関数の微分)

となります。

2つの計算でも元は同じものなので

と書き換えられます。
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機械などに仕事をさせる場合、仕事の量だけでなく「どれだけ速く作業をするか？」が
重要な課題となります。このような「効率」を考える場合、
「単位時間あたりの仕事量」で表し、これを「仕事率 𝑷 」と定義します。
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仕事率の次元は

仕事率の定義 𝑷 =
𝒅𝑾

𝒅𝒕
より、
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仕事率の単位はMKS単位系で表すと

となります。

「𝐉 (ジュール)」は「仕事やエネルギーの単位」で「 𝐤𝐠 ൗ𝐦𝟐
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」になります。
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仕事率の定義 𝑷 =
𝒅𝑾

𝒅𝒕
に仕事の定義𝑾 = 𝑭 ∙ 𝒓より 𝒅𝑾 = 𝑭 ∙ 𝒅𝒓を用いると

dW F dr dr
P F F v

dt dt dt


= = =  = 

と変形でき、「仕事率 𝑷 」は「力 𝑭と速度 𝒗の内積」として表すこともできます。

v



一般用語として「エネルギー」という言葉は広く知られています。
物理では「エネルギー」を「仕事をする能力」と考えます。
運動方程式から導いた「仕事とエネルギーの関係式」
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を見ても解るように「仕事」と「エネルギー」は同じ次元の物理量として扱います。
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かなり乱暴に言うと「運動方程式を𝒎𝒂 = 𝑭 」と記述したとき
「この両辺に 𝒅𝒓の内積を取って全区間積分」し、導かれた式の
「右辺の項を仕事」と呼び、「左辺の項をエネルギー」と呼びます。
よって、「右辺の仕事」を左辺に移項すると、
その項は「エネルギー」と呼び名が変わることがあります。

それではスライドの例を見ながら「エネルギー」について検討してみましょう。

物体(弾丸)が速度 𝒗で壁に打ち込まれ、めり込み、距離 𝒙だけ進んで止まったとします。
めり込む間に壁から受ける力 𝑭は一定とし、
またモデルを単純にする為 𝒙軸方向の力のみ考えるものとします。

それでは手順に従って運動方程式を立てる所から進めて行きましょう。

作図は問題を利用し、軸の設定は右向きを正とします。
又、壁の左端を 𝒙 = 𝟎とします。

作用する力の矢印は

𝒙軸方向のみを考えるので「壁からの力 𝑭 」のみになります。

x
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F



運動方程式は 𝒙軸が右向き正に注意して立てると

となります。

加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より
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ここで両辺を 𝒙で積分すると
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壁に当たった瞬間を 𝒕𝟎 とし、静止した時刻を 𝒕𝟏 とすると
𝒕 = 𝒕𝟎で 𝒙 𝒕𝟎 = 𝟎, 𝒗 𝒕𝟎 = 𝒗
𝒕 = 𝒕𝟏で 𝒙 𝒕𝟏 = 𝒙, 𝒗 𝒕𝟏 = 𝟎
であるから
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この式のそれぞれの項を見ると

弾丸(物体)が
された仕事

2 21 1
0

2 2
 − = −m mv Fx

最後の運動
エネルギー

最初の運動
エネルギー

となります。

運動エネルギーの
変化量 ∆𝑲



従って、「運動エネルギーの変化 ∆𝑲は外力の仕事によるもの」となります。
前式

最後の運動
エネルギー

の「
𝟏

𝟐
𝒎𝒗𝟐 」の部分を「運動エネルギー 𝑲 」と呼びます。

運動エネルギー 𝑲の次元は
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となり、仕事の次元と一致していることが確認できます。
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続いて「(重力による)位置エネルギー」について検討してみましょう。

物体が地表にあり、そこから高さ 𝒉だけ持ち上げる運動を考えます。

まずは作図です。

となります。



軸の設定は「上向きを正」とし、地表を 𝒙 = 𝟎と設定します。

作用する力の矢印を書き込むと

となります。
作用する力は「重力𝒎𝒈 」「手の力 𝑭」が作用しています。
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となります。

加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より

両辺を 𝒙で積分すると

となります。
左辺は「運動エネルギーの変化量」、右辺は「外力の仕事」を表しています。

この手を持ち上げるとき「準静的」に持ち上げたとします。
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即ち、
𝒕 = 𝟎 (スタート時)で速度 𝒗 = 𝟎
𝒕 = 𝒕 (高さ 𝒉 )で速度 𝒗 = 𝟎
となります。

「準静的」とは「静止に準ずる」という意味で
「速度 𝒗を限りなく 𝟎に近い形での運動」を意味しています。



従って、この積分は
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となります。
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従って、「重力による位置エネルギー」は
「重力𝒎𝒈に逆らって 𝒉だけ持ち上げる時の仕事」に等しく、その仕事𝑾は

となり、「この仕事によって物体は位置エネルギーを得た」と考えます。

前述した「右辺にあると仕事」「左辺に来るとエネルギー」の意味が
なんとなくわかったと思います。
「仕事」と「エネルギー」は見方の違いで同じものであるという感覚を身に着けて下さい。

=  =W F h mgh



重力による位置エネルギー 𝑼の次元は
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続いて「自由落下のモデル」についてエネルギーを検討してみましょう。

作図と軸はスライドの図を利用します。

𝒕 = 𝒕𝐀で 𝒙 𝒕𝐀 = 𝟎, 𝒗 𝒕𝐀 = 𝒗𝐀 = 𝟎
𝒕 = 𝒕𝐁で 𝒙 𝒕𝐁 = 𝒉, 𝒗 𝒕𝐁 = 𝒗𝐁 = 𝒗
と設定します。 h

o

x



作用する力の矢印は

となります。

= 
dv

m vdt mgdx
dt

21

2

 
= 

 
 

d
mv dt mgdx

dt

作用する力は「重力𝒎𝒈 」のみになります。

運動方程式は下向き正に注意して立てると

となります。

加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より

両辺を 𝒙で積分すると

=
dv

m mg
dt

= 
dv

m mdx g
t

dx
d

=ma mg

h

o

x
mg



ここで積分区間を適用すると

B

A

2

0

1

2

 
= 

 
 

t h

t

d
mv dt mgdx

dt

( )

( )B

A

2

0

1

2

 
= 

 


v t
h

v t

mv mgdx

 
B

A

2

0

1

2

 
= 

 

v
h

v

mv mgx

2 2

B A

1 1
0

2 2
− = − mv mv mgh mg

2 21 1
0 0

2 2
−  = − mv m mgh mg

21

2
=mv mgh

外力(重力)の
仕事

運動エネルギーの
変化量 ∆𝑲

( )21
0

2
+ − =mv mgh



( )21
0

2
+ − =mv mgh

力学的エネルギー 𝑬

この式は「エネルギー保存則」を表していて

運動エネルギー
𝑲

重力による
位置エネルギー 𝑼

であるから、「自由落下の運動モデル」においては
「全力学的エネルギー 𝑬 =運動エネルギー𝑲+位置エネルギー 𝑼 = 𝟎 」となり
時間によってエネルギーの総和は変化しないことがわかる。



前のモデルは「自由落下」を扱ったが、
運動方程式から一般的にエネルギー保存則を検討してみましょう。

運動方程式

=
dv

m F
dt

において加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より

と表されます。

=ma F



ここで両辺に速度 𝒗 =
𝒅𝒗

𝒅𝒕
を掛けると

21

2

 
= 

 

d dx
mv F

dt dt

となります。
ここでもし作用する力 𝑭が一定であれば微分の中に入れることができ

となります。「左辺には 𝒗 」を「右辺には
𝒅𝒙

𝒅𝒕
」を掛けています。

「= (イコール)」で結ばれたものをどちらに掛けても等式は成り立ちますよね？

さらに「左辺の 𝒗 」を微分の中に入れるように変形すると

=
dv

m
t

v F
d

dx

dt

となり、

( )21

2

 
= 

 

d d
mv Fx

dt dt

( )21
0

2

 
+ − = 

 

d d
mv Fx

dt dt



となり、 。

となります。
この式は「全力学的エネルギーを時間 𝒕で微分するとゼロ」になっています。
よって、「 𝑬 =定数 」であることが判ります。
「微分してゼロ」なら「微分したもの」は「定数」ですよね？
従って、「エネルギー保存則が成立している」と言えます。

話を戻して、条件を設定します。
𝒕 = 𝒕𝟏で 𝒙 𝒕𝟏 = 𝟎, 𝒗 𝒕𝟏 = 𝒗𝟏
𝒕 = 𝒕𝟐で 𝒙 𝒕𝟐 = 𝒙, 𝒗 𝒕𝟐 = 𝒗𝟐
とし、両辺 𝒕で積分すると

( )21
0

2

 
+ − = 

 

d d
mv Fx

dt dt

( ) 0+ =
d

K U
dt

( ) 0=
d

E
dt



2 2

1 1

21

2

 
= 

 
 

t t

t t

d dx
mv dt F dt

dt dt

21

2

 
= 

 

d dx
mv F

dt dt

( )

( )

( )

( )
2

2

1
1

21

2

 
= 

 


v t
x t

x t
v t

mv Fdx

2

1

2

0

1

2

 
= 

 


v
x

v

mv Fdx

2 2

2 1
0

1 1

2 2
− = 

x

mv mv Fdx

外力による
仕事

となります。

運動エネルギーの
変化量 ∆𝑲



となり、「仕事とエネルギーの関係」である
「運動エネルギーの変化は外力の仕事に等しい」ことが確認できます。

これまでの計算の物理的意味を考えてみましょう。

「速度 𝒗は単位時間の変位 𝒙 」を意味しています。

ということは「𝒗 =
𝒅𝒙

𝒅𝒕
」を掛けると

「単位時間あたりの仕事とエネルギーの関係式」となります。
これを全時間に対して積分することは
「最初と最後のエネルギーと仕事の関係式」を表すことになります。
この式を「エネルギー方程式」と呼びます。



物体を移動させ、再び元の位置に戻るまでの間に力がした仕事がゼロになる場合
その力を「保存力」と呼びます。

一般的な例を見てみましょう。

点𝑨から点𝑩までの経路に𝑪ルートと𝑫ルートの2通りあるとします。
行きに𝑪ルートを用い、帰りに𝑫ルートを用いた場合の仕事は

+ACB BDAW W

となります。



また、行きに𝑫ルートを用い、帰りも𝑫ルートを用いた場合の仕事は

+ADB BDAW W

となります。
もし、この経路の移動中に作用している力が保存力の場合、
元の位置に戻ってくれば仕事はゼロであるから

0+ =ACB BDAW W

となります。
従って

0+ =ADB BDAW W

となり、経路に依らないことがわかります。

=ACB BDAW W



ここで保存力の具体例として「鉛直投げ上げのモデル」を取り上げます。

上を軸の正とすると運動方程式は

= −ma mg

となります。

となります。

加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より

= −
dv

m mg
dt



となります。
従って、この運動の仕事𝑾は

( )
0

0
0= − =W mg dx

となります。
従って、この運動は「保存力による運動」であると言えます。

( )= − 
dv

m vdt mg dx
dt

( )21

2

 
= − 

 
 

d
mv dt mg dx

dt

両辺を 𝒙で積分すると

( )= − 
dv

m mx
d

d g dx
t

外力(重力)
の仕事𝑾

運動エネルギーの
変化量 ∆𝑲



エネルギー保存則の導出の例題になります。

「保存則」を示す方法はいくつかあります。
そもそも「保存」とはどういう意味でしょうか？
ここでの「保存」とは「時間的に変化しない」という意味になります。
「時間に依らない量」と言うことになります。

さて、この「時間的に変化しない」と言うことをどのように示すか紹介します。



ー計算する
「具体的に代入してみたら定数」
「積分をしてみたら定数」

いずれも「計算してみたら定数が導けた」ケースになります。
もうひとつが

ー 𝒕の微分の形をつくる
「𝒕で微分したら 𝟎になる」

「𝒕で微分したら 𝟎になる」と言うことは
「微分する前の物理量は時間 𝒕に対して定数であるはず」
という考え方です。

0
 

= 
 

d

dt

この部分は
定数であるはず



それでは実際に例題を進めて行きましょう。

まずは作図と軸の設定をします。

軸は上向きを正としました。

作用する力の矢印を書き込むと

作用する力は「重力𝒎𝒈 」のみ
になります。
運動方程式は

となります。

= −ma mg

x

o

x

o

mg



加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より

= −
dv

m mg
dt

となります。

両辺に速度 𝒗 =
𝒅𝒙

𝒅𝒕
を掛けると

となり、左辺にまとめると

となります。

よって、「
𝒅

𝒅𝒕
」の内部である

「
𝟏

𝟐
𝒎𝒗𝟐 +𝒎𝒈𝒙 」は時間 𝒕に対して定数であると言えます。

= −
dv

m mv g
dt

dx

dt

( )21

2

 
= − 

 

d d
mv mgx

dt dt

21
0

2

 
+ = 

 

d
mv mgx

dt



従って、

𝑬

𝑲

となり、「エネルギー保存則」が成立していると言えます。

21
0

2

 
+ = 

 

d
mv mgx

dt

𝑼



続いてバネ(滑らかな床)のモデルです。

まず、作図と軸の設定は問題の図を利用します。

x

y

x



作用する力の矢印は

となります。
作用する力は「重力𝒎𝒈 」「接触面の抗力 𝑹 𝑵 」「バネの弾性力 𝒌𝒙 」になります。
「接触面の抗力 𝑹 𝑵 」は滑らかな床なので摩擦力が作用せず、
「抗力 𝑹 」は傾かず鉛直上向きになります。

運動方程式は

= −xma kx

= −yma N mg

となります。
𝒂𝒙 = 𝒂, 𝒂𝒚 = 𝟎 (束縛条件)より

= −ma kx

0 = −N mg

x

y

x

mg

( )R N

kx



𝒙軸方向に着目すると、加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より

となります。

両辺に速度 𝒗 =
𝒅𝒙

𝒅𝒕
を掛けると

となります。

よって、「
𝒅

𝒅𝒕
」の内部である「

𝟏

𝟐
𝒎𝒗𝟐 +

𝟏

𝟐
𝒌𝒙𝟐 」は時間 𝒕に対して定数であり

「エネルギー保存則」が成立していると言えます。

となり、左辺にまとめると

= −
dv

m kv x
dt

dx

dt

2 21 1

2 2

   
= −   

   

d d
mv kx

dt dt

2 21 1
0

2 2

 
+ = 

 

d
mv kx

dt

= −
dv

m kx
dt



この問題は「スライド201106-29」と同じモデルの問題になります。

まずは作図です。



続いて軸の設定になります。
斜面に沿って下向きを 𝒙軸、斜面に対して垂直上向きを 𝒚軸と設定します。



y

x

ここで、作用する力の矢印を記入していきます。

作用する力は「重力𝒎𝒈 」と「面からの抗力 𝑹 」がとなります。



y

x

mg

R



sinmg

cosmg

「作用する力」を軸に沿って分解すると

力を分解する時、分解元の力が対角線になるように
長方形をつくり、補助線まで書きましょう。



y

x
mg

R

f

N

運動方程式はそれぞれの軸の加速度を 𝒂𝒙, 𝒂𝒚 と表すと

sin= −xma mg f

cos= −yma N mg

と表されます。



となります。
従って、加速度 𝒂は

となります。
ここで動摩擦力は 𝒇 = 𝝁𝒌𝑵と表されるので

ここで、 𝒂𝒙 = 𝒂 (問題より), 𝒂𝒚 = 𝟎 (束縛条件)より

sin= −ma mg f

0 cos= −N mg

sin cos  = − kma mg mg

sin = − kma mg N

sin cos  = − ka g g

と表されます。
𝒈, 𝜽, 𝝁𝒌はいずれも定数なので 𝒂は定数となり、この運動は等加速度運動であると言えます。



両辺を 𝒙で積分すると

運動方程式の加速度を 𝒂 =
𝒅𝒗

𝒅𝒕
と書き換えて

sin cos  = − k

dv
m mg mg

dt

( )sin cos  = −  k

dv
m vdt mg mg dx

dt

( )sin cos  = −  k

dv
m mg mgdx

t
dx

d

( )21
sin cos

2
  

 
= − 

 
  k

d
mv dt mg mg dx

dt

問題の条件は
𝒕 = 𝟎で 𝒙 𝟎 = 𝟎, 𝒗 𝟎 = 𝒗𝟎
𝒕 = 𝒕𝟏で 𝒙 𝒕𝟏 = 𝑳, 𝒗 𝒕𝟏 = 𝒗𝟏
なので



となります。
従って、仕事とエネルギーの関係式は

( )

( )

( )
1

2

0
0

1
sin cos

2

v t
L

k

v

mv mg mg x  
 

= −   
 

2 2

1 0

1 1
sin cos

2 2
kmv mv mg L mg L  − = −

であり、動摩擦力がした仕事𝑾摩は

となります。

( )2 2

1 0

1 1
sin cos

2 2
kmv mv mgL mgL  − = + −

運動エネルギーの
変化量 ∆𝑲

重力が
する仕事𝑾𝒈

摩擦力がする
仕事𝑾摩

cos = −
摩 kW mgL


