
「場」という概念が登場します。「空間自体が変化している状態」であると考える考え方です。

ある空間に帯電体を持って来たとします。
このとき、この帯電体にクーロン力が働く状態であれば、
「この空間に電場が存在する」と考えます。

「電場」と「電界」は「electric field」を翻訳するとき「field」をどう訳すかの違いです。
物理系は「場」を多く用い、工学系は「界」を利用するケースが多いようです。

電場は目に見えるものではないので、電場の有無を測るためには電荷を持ってくれば
判別ができます。



重力場の場合は質量𝒎を持ってくると「重力𝒎𝒈 」が作用するのと似ています。

電場の有無を調べるために「試験電荷 𝟏 𝐂 」を置いたとします。
この「試験電荷」を「単位正電荷」とします。

ある空間を考えたときに、その空間内に +𝑸の電荷があるとします。
すると、この電荷によりクーロン力が斥力として作用します。

従って、この空間内には「電場が存在している」ことになります。

言い方を変えると
「 +𝑸 𝐂の電荷の存在によって空間が変化し力を受けている」
と表すことができます。

この「空間が変化している」という考え方が重要になります。

F

+Q

[C]+1



ここで、1個の試験電荷に着目すると、
この試験電荷が受けるクーロン力は

2 2 2

1
= = =

Qq Q Q
F k k k

r r r

となります。この力 𝑭は「 +𝟏 C当たりのクーロン力」となりこれを「電場 𝑬 」と定義します。

試験電荷の代わりに任意の電荷 𝒒 𝐂を持ってくれば

となり、クーロンの法則の式と一致します。

2
= =

Qq
F qE k

r



まとめると、
「電場 𝑬は +𝟏 𝐂当たりのクーロン力」を指し、

と表します。
単位は 𝟏 𝐂当たりの力なので「 Τ𝐍 𝐂 」となります。

2
=

Q
E k

r



前で話した様に、「電場は目に見えない」ものです。
そこで、この電場を視覚的に表すものが「電気力線」になります。
「電気力線」は「試験電荷がクーロン力を受けて移動する道筋」になります。

ある空間に点電荷 +𝑸 𝐂が存在したとすると

+Q
この様に放射状に電気力線が広がります。
「+𝑸」の電荷なので作用するクーロン力は斥力となり、
矢印は外向きになります。



ある空間に点電荷 −𝑸 𝐂が存在したとすると

この様に電気力線が点電荷に吸い込まれるようになります。
「−𝑸」の電荷なので作用するクーロン力は引力となり、
矢印は内向きになります。

-Q



また、ある空間に点電荷 +𝑸 𝐂 と −𝑸 𝐂が存在したとすると

+Q -Q

図のようになります。

電気力線は「+𝑸の点電荷」から出て
「−𝑸の点電荷」に吸い込まれるように
なります。



また、ある空間に点電荷 +𝑸 𝐂 と +𝑸 𝐂が存在したとすると

図のようになります。

ここで電気力線の性質について記述しておきます。

・ 電気力線は正電荷から始まり、負電荷で終了する。途中で消えることはない
・電荷が1個しかない場合、電気力線は無限遠方まで続いている。

但し、電場の大きさは
𝟏

𝒓𝟐
依存なので限りなく小さくなる。

・電気力線の各点の接線はその点での電場の向きを表している。
・電気力線の密集地では電場の大きさは大きい
・電気力線自体は短くなろうとする。(最短ルートを取ろうとする)
・ 電気力線は交差をすることはない

電気力線は2ヶ所の「+𝑸の点電荷」から出て
いきます。お互いに電気力線は交わること無く
反発し合うように広がっていきます。

+Q +Q



注)
クーロン力と静電気力は
同じ力を指します。

さて、「クーロン力は力」ですから「仕事とエネルギーの関係」を考えることになります。
この「クーロン力(静電気力)による位置エネルギー」のことを「静電エネルギー」と呼びます。

点電荷 𝑸から距離 𝒓の位置にある点電荷 𝒒が持つ静電エネルギー 𝑼は

と表されます。
𝑼の基準点は無限遠方 𝒓 = ∞ としています。
つまり、点電荷 𝒒を無限遠方から点電荷 𝑸から受けるクーロン力に逆らって移動させたと
考えた時のエネルギーとなります。

=
Qq

U k
r



何故、この式で表されるのかについては後半で解説します。
この式の導出は今日の山場の一つです。
高校物理では天下り式に結果を与えられただけだったと思いますが、
後で実際に運動方程式から導けば納得ができるかと思います。



電位は「 𝑽 , 𝝓 」で
表すことが多い

「静電エネルギー 𝑼 」は電荷 𝒒当たりのエネルギーを表しています。
このエネルギーの𝟏 𝐂当たりを考えたものが「電位 𝑽 」になります。

即ち、電位 𝑽は

と表されます。

1
= =  =

U Qq Q
V k k

q r q r



ここで電位を定義すると

「+𝟏 𝐂の電荷に 𝟏 𝐉の仕事をし、基準点からある位置まで移動させたとき
そのある場所の電位を 𝟏 𝑽とする。」

となります。

皆さんにも馴染みがあるであろう「𝐕 (ボルト)」 と言う単位は「電位」の単位であり、
「エネルギー」を表しているのです。



電位についてもう少し話をしていきます。
前で表した様に、

と表されます。
従って、電位 𝑽は距離 𝒓に依存した値となります。
距離 𝒓が等しい場所では同じ電位となります。
また、点電荷 𝑸による電場は3次元空間的に広がるので電位が等しい部分は「面」として
表すことができ、「等電位面」と呼びます。

=
Q

V k
r



等電位となる場所は同心円状になり、
3次元空間としては「球面をイメージ」することになります。
また、電位の大きさは

より、距離 𝒓に反比例したグラフとして表されます。

=
Q

V k
r



単位ベクトル

ここではクーロン力についてベクトルを用いて一般的に表現する方法を解説します。
少し難しいので「参考」と考えて下さい。

ベクトルとして表すと、「大きさ ・単位ベクトル」の形で表します。

1 2

2

1 21 2

r rQq
F k

r rr r

−
= 

−−

クーロン力
の大きさ



単位ベクトル

電場 𝑬も同様に

ベクトルとして表すと、「大きさ ・単位ベクトル」の形で表します。

1 2

2

1 21 2

−
= 

−−

r rQ
E k

r rr r

電場
の大きさ



さて、それでは今日の山場である「静電エネルギー 𝑼の導出」を進めていきます。

点電荷 𝑸を固定し、点電荷 𝒒がどれだけのエネルギーを持っているかについて考えます。
点電荷 𝒒が距離 𝒓𝟎の位置である点𝐁から距離 𝒓の位置にある点𝐂まで移動した時に
生じる仕事を考えることによりクーロン力による位置エネルギーを計算します。
さらに、点𝐁を無限遠方 𝒓𝟎 = ∞に設定すれば良いことになります。

それでは進めていきましょう。



図に表すと

𝐀
 +q

CF
x

0rr

f+Q

o

𝐁𝐂

作用する力は「クーロン力 𝑭𝑪」と「手の力 𝒇」になります。
距離 𝒙 ( 𝒓 < 𝒙 < 𝒓𝟎 )でのクーロン力 𝑭𝑪は

x

2
=C

Qq
F k

x

であるからこの運動の運動方程式は

2
= −

Qq
ma k f

x

と記述でき、加速度の定義 𝒂 =
𝒅𝒗

𝒅𝒕
(1次元)より

2
= −

dv Qq
m k f

dt x

両辺を 𝒙で積分すると



となります。

2

 
= − 

 
 

dv Qq
m k f

dt x
dx dx

2

 
= − 
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dv Qq
m vdt k f dx

dt x
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   
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d Qq
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よって、

( )2

2

1

2

 
= + − 

 
  

d Qq
mv dt k dx f dx

dt x

クーロン力
の仕事

運動エネルギー
の変化

手の仕事

となります。
ここで、この運動は準静的過程であるとし、
初期条件を設定すると



となります。

クーロン力による
位置エネルギー 𝑼

手の仕事𝑾手

𝒕 = 𝟎で 𝒙 𝟎 = 𝒓𝟎 , 𝒗 𝟎 = 𝟎
𝒕 = 𝒕′で 𝒙 𝒕′ = 𝒓 , 𝒗 𝒕′ = 𝟎
なので
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ここで、基準点𝐁を無限遠方 𝒓𝟎 = ∞と設定し直すと

となります。

( )
0

1 1 
− = − 
 


r

r
kQq f dx

r

( )
0

1
= −

r

r
kQq f dx

r



従って、

であるので

( )
0

= −
r

r

Qq
k f dx

r

クーロン力による
位置エネルギー 𝑼

手の仕事𝑾手

となります。

= =手

Qq
U W k

r



ここではクーロン力による静電エネルギーについてベクトルを用いて
一般的に表現する方法を解説します。
結構難しいので「参考」と考えて下さい。流し読みでOKです。

前のスライドでは話を簡単にするために 𝒙軸上の移動としていましたが、
任意のルート点𝐁から点𝐂の移動を考えます。

微小区間 𝒅𝒔を移動する際の仕事 𝒅𝑾は

dW F dst= − 

と表されます。ここでの റ𝒕は経路の接線ベクトルの単位ベクトルになります。



経路全体の仕事𝑾は

( ) ( ) ( )= −  = −  = −   BC BC BC
W F dst F t ds qE t ds

となります。
ここで、経路𝐁𝐂の代わりに経路𝐁𝐁’𝐂を考えます。
経路𝐁𝐁’は円周の一部なので、

常にクーロン力 𝑭 と接線ベクトル റ𝒕は直交します。
従って、この経路𝐁𝐁’の仕事は内積が𝟎となるので

𝐁׬
𝐁′
𝒅𝑾 = 𝟎となります。

従って、前述の仕事𝑾は

( )= − BC
q E t ds

ds

+Q

 F
+q

A

B

C

 t

B’

( ) ( ) ( ) ( )
' ' '

 = −  = −  + −  = − 
    BC BB B C B C

W q E t ds q E t ds q E t ds q E t ds

と表され、前のスライドで表した簡単なモデルへと帰着できます。



従って、スライド201225-13と同様の計算を行うことになり、

と表されます。
電位の定義より電位を 𝝓とすると

0

1 1 
= − 

 
手W kQq

r r

( )
( )

− 
= = = = − 




手 BC

BC

q E t dsWU
E t ds

q q q

となります。



経路上のある任意の2点を考え、
それぞれの静電ポテンシャルを 𝝓𝑹, 𝝓𝑺 とすると
点𝐒に対する点𝐑の静電ポテンシャルは

と表されます。

( ) − = − R S
RS

E t ds

R

S

R

S



( ) − = −  R S E t s

区間𝐑𝐒が微小な区間 𝚫𝒔場合

 −
 = −



R SE t
s

と表され、 𝚫𝒔の極限を考えると

0
lim

 

 →

−
 = −



R S

s
E t

s

と表されます。



これを3次元空間に拡張すると
𝒙成分において単位ベクトルを റ𝒊と記述すると

と表されます。
𝝏

𝝏𝒙
は偏微分を表しています。

( )
( ) ( ) ( )
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, , , , , ,
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  
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+  − 
 = − = −

 x

x x y z x y z x y z
E x y z i

x x



同様に 𝒚, 𝒛成分も計算しまとめると

( )
( ) ( ) ( ), , , , , ,

, , , ,
     

= − − − 
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x y z x y z x y z
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x y z

となります。
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A

z

o

R

r

x dx

E

解説は宿題の問題を軸に進めていきます。

まずは作図になります。
微小部分 𝒅𝒙が点𝐀に作る電場 ∆𝑬は
微小部分と点𝐀を結んだ直線上に生じます。

この微小部分の電気量 𝒅𝑸は線密度 𝝆がであるから

=dQ dx

となります。



x

A

z

o

R

r

x dx

E

従って、この微小部分による電場の大きさ ∆𝑬は

となります。
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cos = zE E

z

x

R
x

x−

E+ E−

となります。

微小部分がある場所は反対側(マイナス側)にも同様に考えることが出来ます。
従って、対称性により ∆𝑬の 𝒙成分は打ち消し合い 𝒛成分のみが残ることになります。

電場 ∆𝑬の 𝒛成分 ∆𝑬𝒛は

2

0

1
cos

4





=

dx

r



となります。

この ∆𝑬𝒛 を全区間に対して積分を行えば 𝑬𝒛が求まります。

2
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1
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dx
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2
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∆𝑬𝒛は変数が 𝒙, 𝜽と2つあるので、これを 𝜽のみの変数に式変形します。
そのための下準備をします。
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となります。

∆𝑬𝒛について整理すると
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従って 𝑬𝒛は
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となります。

𝒙の微分について

tan=x R

sin

cos



  

 
=  

 

dx d
R

d d

( ) ( )
11

sin sin cos
cos

  
  

− 
= + 

 

d d
R

d d

( ) ( ) ( )
21

cos sin 1 cos sin
cos

   


− 
= +  −  − 

 
R

2

2

sin
1

cos





 
= + 

 
R

2 2

2

cos sin

cos

 



 +
=  

 
R

2

1

cos 
= R



レポート課題の問題なのでここでは解答しません。

チャレンジしてみて下さい。



このモデルも微小部分が作る電場を考え、全区間積分という流れになります。

微小部分の電荷 𝒅𝑸は

となります。
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2 2r R x= +
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dQ Rd
dE k k

r r
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= =

 =dQ Rd

となります。
よって、微小部分が作る電場 𝒅𝑬は



対称性により 𝒛成分だけ計算すればよく、 𝒛成分の電場 𝒅𝑬𝒛は

2
cosz

Rd
dE k

r

 
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と表されます。
ここで

であるから電場 𝒅𝑬𝒛は

cos =
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r
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となります。
従って、全電場 𝑬𝒛は
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今日の内容をまとめたスライドになります。
クーロン力をスタート地点としてそれぞれがどの様な関係になっているかを理解しましょう。

それぞれの関係を理解すれば、覚える式はクーロン力の式だけでOKなはずです。


