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電磁気学	

電磁気学	
   電気モーター	
  

ラジオ	
  
テレビ	
  
コンピューター	
  
電子機器	
  
など	


電気及び磁気に関する物理現象	
   法則	


電磁気学の歴史	
  

時代	
 誰が	
 内容	


B.C. 2000頃	
 中国の文献	
 磁気の存在の記述あり	


B.C 700頃	
 古代ギリシャ人	
 電気的、磁気的現象の観察 (琥珀の帯電現象)	


1600年	
 ウィリアム・ギルバート	
 帯電現象が一般的な現象と発見	


1785年	
 シャルル・クーロン	
 電気力が逆2乗法則に従うことを発見	


19世紀初頭	
 　	
 電気と磁気が互いに関係ある現象を発見	


1820年	
 ハンス・エルステッド	

電流の流れる回路付近にコンパスをおくと、磁針の向きが変
ることを発見	


1831年	
 マイケル・ファラデー	
 磁石の近辺で電線を運動させると、電線に電流が発生するこ
とを発見　	
ジョセフ・ヘンリー	


1873年	
 ジェームス・クラーク・マクスウェル	
電磁気学の法則を完成　(Maxwellの方程式)	


1888年頃	
 ハインリッヒ・ヘルツ	
 電磁波を発生させ、真空中でも電磁波が伝播することを立証	


利用	
  



Maxwellの方程式	


電荷：静電現象の原因　	
  

引力　　＋(正)と－(負)	
  

帯電体A	

帯電体B	


帯電体C	


帯電体D	


電気量が同じ	


電気量が3倍	


微分形	
  

物体の帯電状態(電気を帯びている状態)	
  には強弱がある	
 電気の量	


物理では「力」が重要	
  
電気の間では	
  

斥力(反発力)　　＋(正)と＋(正)　 －(負)と－(負)	
  

この電気の量を	
  
「電荷」または「電気量」	
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静電現象〜電荷	

電荷：静電現象の原因　	
  

引力　　＋(正)と－(負)	
  

帯電体A	

帯電体B	


帯電体C	


帯電体D	


電気量が同じ	


電気量が3倍	


静電気	
  

物体の帯電状態(電気を帯びている状態)	
  には強弱がある	
 電気の量	


物理では「力」が重要	
  
電気の間では	
  

斥力(反発力)　　＋(正)と＋(正)　 －(負)と－(負)	
  

 +q

 +q

  +3q

 F

 F

  3F

この電気の量を	
  
「電荷」または「電気量」	


+



電荷〜クーロンの法則	


とおくと	
  

 F =α ⋅Qq

(	
  シャルル	
  -­‐	
  オーギュスタン・ド・クーロン	
  )	


と表すことができる	


 +Q  +q
F

A	
 B	

電荷の定義を考える	


F右図の様な2つの電荷があるとき	
  
A,Bはそれぞれ斥力	
F を受ける	
  
比例定数を	
α

この比例定数	
 を見出した人	
  α フランスの物理学者	


Charles - Augustin de Coulomb 	


「ねじればかり」を用いて、	


1777年、細い絹糸のねじれのバランスを	
  
利用して、１/	
  100,000	
  グラムの微少な力	
  
の変化を測定できるねじれ秤（はかり）を	
  
発明した。	
  
このはかりを利用して、帯電した小球二個	
  
の間に働く引力や反撥力を測定した。	


αこの比例定数	
 がAB間の距離 	
 r
2乗に反比例することを見出した	
  

の	


F は	
   Q にも	
   q にも比例する	
  



電荷〜クーロンの法則	


  
F = k Qq

r 2

電荷が受ける力の大きさは	
  
と表すことができる	


 F r

 +Q  +q
F

 mg

A	
 B	

従って	


F

[	
  m	
  /	
  s2	
  ]	


重力の場合	


  
α = k 1

r 2

 r

となる	
  

電気量	
  :	
  [C]	
  	
  

クーロン力の大きさを重力と比較すると	
  

比例定数	
   k ≈ 9.0×109 [	
  N･m2	
  /	
  C2	
  ]	
  	

クーロン力	
  :	
  [N]	
  	
  

単位	
  

:	
  N･m2	
  /	
  C2	
  	
 k

  
F = k q ⋅q

r 2 = 9.0×109

  m = 1 [	
  kg	
  ]	
  

  g ≈10

  F = mg = 10

クーロン力の場合	


 F
 +q  +q   q = +1[	
  C	
  ]	
  

[	
  m	
  ]	
  

	
  [	
  N	
  ]	
  

  r = 1

	
  [	
  N	
  ]	
  



クーロンの法則	


 +Q  +q
 F

A	
 B	


 F
 r

と表せ、この力を「クーロン力」と呼ぶ	
  

クーロンの法則	
  

帯電体A,B	
  の体積が無視できるほど	
  
小さく 「点電荷」とみなせるとき	
  
2つの電荷間に働く力は	


  
F = k Qq

r 2

同符号の場合：斥力（反発力）	
  
異符号の場合：引力	




クーロンの法則〜例題(原子)	


[	
  N･m2/C2	
  ]	
  とする。	
  

ヘリウムの原子核は2個の陽子と2個の中性子で構成されていて、	
  

大きさは約	
  

[	
  m	
  ]	
  離れた位置にある。	
  

但し、電子の電荷を	
   [	
  C	
  ]、クーロン定数を	
  

[	
  m	
  ]	
  である。	
  

ヘリウムの原子核内の陽子に作用しているクーロン力を求めよ。	
  

 1.6×10−19

陽子と電子が	
   1×10−8

このときの電子と陽子が引きあう力の大きさを求めよ。	
  

 9.0×109

 2×10−15

[	
  N･m2/C2	
  ]	
  とする。	
  但し、電子の電荷を	
   [	
  C	
  ]、クーロン定数を	
   1.6×10−19
 9.0×109





クーロンの法則〜例題	


を考えよ	
  

の点電荷を置くとき、この点電荷	


 x

 +Q

 +q

が受ける力が最も大きくなる場所	
 x

  2d

クーロンの法則〜例題	
  

この問題を考えるにあたって、以下の設問に	
  
従って検討してみよう	
  

1.点電荷	
  

 +q

図のように、正の電気量 	
 +q をもつ2つの	


点電荷を距離 	
 離して固定する	
  2d
この2つの点電荷を結ぶ線分の垂直二等分	


線上に 	
 +Q

 +Q が2個の点電荷から受ける力	


を図に書き込め	




 f

 +Q

 +q
従って、点電荷	


の合成となる	
  

この3つの点電荷において、それぞれから	
  
うけるクーロン力は図のようになっている	
  

クーロン力	
  
 +q

全て正の電気量を持っているので斥力	


が受ける力	
 +Q

 f

 F
は	
 F

 f



f

+Q

+q

点電荷	


d

f = k Qq
r2

= k Qq

x2 + d 2( )2
2.	
  この２つの点電荷のうち1つから受ける力	
  

x

が受ける力	
+Q
f

を求めて、それの最大値を探ればよい	
F

f を求めよ	
  

x2 + d 2

= k Qq
x2 + d 2



f
は	
  

ここで、	


求める力	


従って、	
  

F1
F

3.	
  この２つの点電荷から受ける力	
   を求めよ	
  F

θθ

F = 2F1 = 2 f cosθ

d

xx2 + d 2

  
cosθ = x

x2 + d 2

  
F = 2 f cosθ = 2k

Qq
x2 + d 2

x

x2 + d 2

= 2kQqx

x2 + d 2( )
3
2



が最大となるのは	
  

となるところであるから	


F
4.	
  この力が最も大きくなる場所	
  	
   はどこか求めよ。	
  x

dF
dx
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従って、最大値となる場所	
 は	
  x

x = d
2

= 2kQq x2 + d 2( )−
3
2 − 3x2 ⋅ x2 + d 2( )−

5
2

⎧
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電荷〜クーロンの法則〜例題	


電荷2：	
  
a

x

軸上に置かれている。	
  

電荷1：	
  

2つの電荷が	
  

(1)	
  電荷3	
  (	
  q3 = q

x
x = 0,q1 = +e
x = a,q2 = +4e

軸上	
  x に置いたとき、電荷3が受ける力を求めよ。	
  0 < x < a

q2 = +4e

0 x

q3 = qq1 = +e

)を	


(2)	
  電荷3の電荷1と電荷2から受ける力がゼロになる場所を求めよ。	
  

(3)	
  3つの電荷の受ける力をゼロにするための電荷3の電気量を求めよ。	
  



電荷〜クーロンの法則〜例題	


m,q

x

、電荷	
  

2つの球の間隔	
  

質量	
   qm

θ

をもつ十分に小さな球が、長さ	
  
x

の糸で吊るされて静止している。	
  L

L

o
− x
2

y
 2θ

はいくらか求めよ。	


は十分に小さいとする。	
但し、角度	
  

m,q

x
2

L





電場（電界）	


「この空間に電場（電界）が存在する」	


ある空間に	


つまり、この試験電荷にクーロン力が	
  
働いているのでこの空間には「電場」が	
  
存在していることになる	
  

電場があるかどうか試しに、	
  

ある任意の空間に、帯電体を持ってくる	
  

この帯電体にクーロン力（静電気力）が働く状態であれば、	
  

[C]	
  の電荷の存在によって空間が変化し力を受ける	


任意の空間	


帯電体	


F

電場の有無は電荷を持ってくれば判別できる	


[C]	
  電荷があるとする	
+Q

+Q

試験電荷	
 [C]	
  を置いてみる	
+1 単位正電荷	
  

[C]	
+1

すると、	
   [C]	
  の電荷による斥力が働く	
  +Q

+Q
考え方を変えると	




電場（電界）	


は	
この	


任意の	
  

試験電荷1個に着目して	
  

これが電場	
   である	


E

[C]	
  電荷を持ってくれば	


F

+Q

となり、クーロン力と同じになります。	


[C]	
  当たりのクーロン力と考えられ、	
+1

[C]	
+1
クーロン力を考えると	


[C]	


r
2 2 2

1Qq Q QF k k k
r r r

⋅= = =

E
+q

F = qE



電場（電界）	


[m]	
  だけ離れた電場	
点電荷	


定義	
  

[	
  N	
  /	
  C	
  ]	


[C]	
  に働く力で定義される	
+1電場は	


E = k Q
r2

r[C]	
  から	
+Q の大きさは	
E

+Q +q
F

A	
 B	


Fr

クーロンの法則	
  

  
F = k Qq

r 2
[	
  N	
  ]	


+Q
Er





電場〜電気力線	


点電荷	


電気力線	
  

電場の様子を視覚的に表す方法	
  

の電荷の存在によって空間が変化する	


試験電荷が静電気力を受けて移動する道筋	


+Q

+Q

[C]	
  が存在	
+Q 点電荷	
 [C]	
  が存在	
−Q

−Q



電場〜電気力線	

点電荷	


・電気力線は正電荷から始まり、負電荷で終了する	
  (途中で消えない)	
  
・電荷が1個しかない場合は、無限遠方まで続いている	
  
・電気力線の各点の接線は、その点の電場の向きを示している	
  
・電気力線の密集地では、電場の大きさが大きい	
  
・電気力線自体は短くなろうとする	
  
・電気力線は交差しない	
  

+Q

[C]	
  と	
+Q

電気力線の性質	


[C]	
  が存在	
−Q

−Q

点電荷	
 [C]	
  と	
+Q [C]	
  が存在	
+Q

+Q +Q



電場〜静電エネルギー	


点電荷	


静電気力による位置エネルギー	
  

となる無限遠方	
  

静電エネルギー	


U = 0 r = ∞( )

から距離	
Q

電場中の電荷には静電気力(クーロン力)が働く	


の位置にある点電荷	
r がもつ静電エネルギー	


である	


q

の基準は	
  U但し、	
  

U = k Qq
r [	
  J	
  ]	


x

r

+Q

F = k Qq
x2

+q 無限遠	
  

基準点	
  

無限遠からクーロン力に	
  
逆らって移動させる	
  



静電エネルギー〜電位	


単位電荷当たりの位置エネルギー	


即ち、	


電位	
  

電位	
  

試験電荷	
  

とすると	


[C]	
  がもつ静電エネルギー	
+1

静電エネルギー	
U、着目している電荷	
+q

V = U
q

は	
  V

となる	


基準点から考えている点まで運ぶのに要する仕事	
  

[C]	
  の電荷を、静電気力に逆らって	
  +1

[C]	
  の電荷に	
  +1 [J]	
  の仕事をして、基準点からある場所まで移動させたとき、	
  1
そのある場所の電位を	
   [V]	
  とする。	
  1



静電エネルギー〜電位	


となる	


点電荷の場合	
  

これは、無限遠を基準とした、	


V = U
q
= k Qq

r
⋅ 1
q
= k Q

r

[V]を表している	
[C]	
  の電荷から	
  Q [m]	
  離れた点での電位	
  Vr



電位〜等電位面	


電位	
  

が1つ存在しているとすると	
点電荷	
  +Q

V = U
q
= k Q

r

単位電荷当たりの位置エネルギー	

等電位面	
  

電位が等しい平面、曲面	
  

と表せる	


電位	
   は	
  V
V

rr

r0



電位〜等電位面	


等電位面	


電位	
  

電気力線	


V

0

点電荷	
 [C]	
  が存在	
+Q 点電荷	
 [C]	
  が存在	
−Q

0

V





クーロン力〜ベクトル	


A	
  

と表せる	
  

 

F

図のように2つの点電荷があるとする	


の向きを表す単位ベクトル	
  

となるので	
  

クーロン力のベクトル表示	


q
 
r1

 

FQ

O

B	
  

 
r2

   
r2 −
r1

AB間の距離は	


   
r1 −
r2

であるから、	
  
クーロン力	
 は	
 


i

   


i =
r1 −
r2r1 −
r2

   


F = k Qq

r1 −
r2

2 ⋅
r1 −
r2r1 −
r2



電場〜ベクトル	


A	
  

と表せる	
  

は	


が、Bの位置につくる電場は	
  

電場	
 

E

q
 
r1

 

FQ

O

B	
  

 
r2

 
r2 −
r1単位電荷に働くクーロン力なので	


 


E =

F
q

Aの点電荷	
  

 
= k Q
r1 −
r2
2 ⋅
r1 −
r2r1 −
r2

Q



クーロン力〜静電エネルギー	


必要な仕事を考える	
  

図において、点電荷	
q

となる	
  

F = k Qq
x2

x

r

+Q

F = k Qq
x2

+q
A	
  

をクーロン力に逆らってBからCまで運ぶのに	
  

Aから距離	
  
B	
  

C	
  

r0

の地点の力は	
  

よって求める仕事は	
  

ここで、基準点Bを無限遠とすると	
  

x

W = − F
r0

r

∫ dx = − k Qq
x2r0

r

∫ dx

= k Qq
x

⎡
⎣⎢

⎤
⎦⎥r0

r

= kQq 1
r
− 1
r0

⎛
⎝⎜

⎞
⎠⎟

U =W = k Qq
r



クーロン力〜静電エネルギー	

を任意の経路を経て	
  A点の点電荷	
Q

となる	
  

 dW = −

F ⋅ds


t ds

+Q

 

F

+q

A	
  

がつくる電場の中を、B点から点電荷	
  

短い区間	
  
B	
  

C	
  

 

t

経路BB’は移動方向と力の向きが垂直なので仕事は	
  

C点まで運ぶ仕事を考える	
  

ここで、A点を中心とする半径ABの円を考え、ACの延長線上の点をB’	
  とすると	
  

0

B’	
  

q

ds

よって求める仕事は	
  

であるから	
  

を移動するときに要する仕事は	
  

 
W = −


F ⋅

t( )

BC
∫ ds

 
= −q


E ⋅

t( )

BC
∫ ds

 
W = −q


E ⋅

t( )

BC
∫ ds = −q


E ⋅

t( )

B'C
∫ ds



クーロン力〜静電ポテンシャル	


点Sに対する点Rの静電ポテンシャルは	
  

これは図の様に簡単に考えられるので	


となる	
  

R	
  

S	
  

ある任意の点R、点Sを考え、それぞれの静電ポテンシャルを	
  

以前の計算と同様に	
  

電位の定義から電位	
  (静電ポテンシャル)	
  を	
  

W = kQq 1
r
− 1
r0

⎛
⎝⎜

⎞
⎠⎟

φ
となる	
  

とすると	
  

とおくと	
  

 
φ = W

q
= −


E ⋅

t( )

BC
∫ ds

x

r

+Q

F = k Qq
x2

+q
A	
   B’	
  

C	
  

r0

φR ,φS

 
φR −φS = −


E ⋅

t( )

RS
∫ ds



クーロン力〜静電ポテンシャル	


成分は	
  

ここで、RS間の距離が微小の場合	


 RS
 

これを3次元空間に拡張すると	
  

x

 


E(x, y, z) ⋅


i = − lim

Δx→0

φ x + Δx, y, z( )−φ x, y, z( )
Δx

となるので	
  

方向の電場の成分	
  

 
φR −φS = −


E ⋅

t( )Δs

 


E ⋅

t = − lim

Δs→0

φR −φS
Δs

= −
∂φ x, y, z( )

∂x

電場の	
    

E ⋅

i

R	
  
S	
  

Δs



クーロン力〜静電ポテンシャル	

成分は	
  

よって	


従って、	
  

の「勾配」	
  

y, z となるので	
  同様に、電場の	
    

E ⋅

j ,

E ⋅

k

 


E(x, y, z) ⋅


j = − ∂φ(x, y, z)

∂y  


E(x, y, z) ⋅


k = − ∂φ(x, y, z)

∂z

 


E(x, y, z) = − ∂φ(x, y, z)

∂x
,− ∂φ(x, y, z)

∂y
,− ∂φ(x, y, z)

∂z
⎛
⎝⎜

⎞
⎠⎟

 
E(r ) = − ∂φ(r )

∂x
,− ∂φ(r )

∂y
,− ∂φ(r )

∂z
⎛
⎝⎜

⎞
⎠⎟

 
= − ∂

∂x
, ∂
∂y
, ∂
∂z

⎛
⎝⎜

⎞
⎠⎟
φ(r ) = −∇φ(r )

φ

∇φ
grad φ





クーロンの法則〜線電荷	


x

である無限に長い直線上の電荷がある。	
  

A	
  

但し、線の太さは無視できるものとする。	
  

単位長さあたりの電気量(線密度)が	
  ρ
にある点Aでの電場の大きさを求めよ。	
  R

z

o

直線から距離	


R
ρ



クーロンの法則〜面電荷	


で一様に電荷が分布しているとする。	
この平面上に面密度	
  

この平面から距離	
  

a

σ

無限に広い平面がある。	
  

だけ離れた点での電場の大きさを求めよ。	
  
とする。	


a
但し、真空誘電率は	
  

σ

ε0



クーロンの法則〜リング状電荷	


である場合、	
   z
軸を中心軸にもつ半径	
   のリング状の電荷がある。	
  

単位長さあたりの電荷量(線密度)が	
  
R
ρ

図のような	
  z

軸上の点Pでの電場の大きさを求めよ。	
  z

o

P	


R



クーロンの法則〜周辺のまとめ	


電位	
  :	
  

仕事(力の距離積分)	
  

電場	
  

 
E(r ) = − ∂

∂x
, ∂
∂y
, ∂
∂z

⎛
⎝⎜

⎞
⎠⎟
φ(r ) = −∇φ(r )

静電エネルギー	
  

+Q +q
Fr

+1	
  [	
  C	
  ]	
  当たりの静電エネルギー	
  

クーロン力	
  
(静電気力)	
  

+	
  1	
  [	
  C	
  ]	
  当たりのクーロン力	
F = k Qq
r2

に逆らってする仕事	


E = F
q
= k Qq

r2
1
q
= k Q

r2

× 1
q

N ⋅m2 / C2  C2

m2  = [ N ]

N
C

 = [ N / C ]

× 1
qU =W = − F∫ dx = − k Qq

r2
dx

r0

r

∫
F

= kQq 1
r
− 1
r0

⎛
⎝⎜

⎞
⎠⎟

無限遠基準	


r0 →∞
= k Qq

r

r

+Q

+q

V = U
q
= k Qq

r
1
q
= k Q

r

F

F

+1	
  [	
  C	
  ]	
  の電荷に1	
  [	
  J	
  ]	
  の仕事を1	
  [	
  	
  V	
  	
  ]	
  

V ,φ





クーロン力〜ガウスの法則	

任意の3次元空間中に点電荷	


この点電荷から距離	
  

E

が固定してある	
  

[	
  m2	
  ]	
  

電場の大きさを表すのに電気力線の本数を考える	
  

Q
r

ここで電気力線について考える	
  

と表せる	
  

の位置の電場は	
  

E = k Q
r2

r
E = k Q

r2
Q

電気力線も電場と同じ向きである	
  

単位面積当たり	
   本の電気力線を引くとする	
  

rQ

E = k Q
r2

1

[	
  本	
  ]	
  

電気力線の密度を見ることで電場の大きさを	
  
視覚的にとらえることができる	
  

r



この点電荷	


この点電荷から3次元的に放射状に電気力線が	
  
出ているので	
  

から出る電気力線の総本数	
  

[	
  m2	
  ]	
  

形状に関する量	
  
が含まれていない	
  

Q

r半径	
  

を求める	
  

の球の面積を	
  

= k Q
r2

⋅4πr2

E = k Q
r2

Q
とすると	
  

ガウスの法則	
  

1

帯電体の形状に関係ない	
  

N

S
N = E ⋅S

= 4π kQ [	
  本	
  ]	
  

電荷	
 から湧き出す電気力線の総本数	
  Q [	
  本	
  ]である	
  4π kQ

r

E単位面積当たり	
   本の電気力線を引くとすると	
  



コンデンサー	

2枚の平面金属極板を平行に設置したものを考える	
  

金属板A	
  電池は金属板Aの自由電子を金属板Bへ運ぶ	
  

V

(	
  A上の電荷とB上の電荷は引きあう為	
  )	
  電池を切り離しても電荷は失われない	
  

A,Bの電位差が電池の電位差と等しくなる	
  

更に電池を接続し、図のような回路にした	
  

−Q

+Q

金属板B	
  

電気(電荷)を蓄える装置	
  

金属板はそれぞれ正負に帯電	
  

金属板に蓄えられる電気量は互いに大きさが等しく、異符号の電気量	
  

自由電子の移動が止まる	
  



コンデンサー〜ガウスの法則	


位置エネルギーと仕事の関係から	


平面上の電荷なのでガウスの法則を考える	
  

金属板A	
  

E = 4π kQ
S

4π kQ
[	
  本	
  ]	
  

電気力線の総本数は	
4π kQ

−Q

+Q

金属板B	
  

[	
  本	
  ]	
  

、極板間隔を	
  

とすると	
  

であるから図のようになる	
  

S

単位面積当たりの電気力線の本数は	
  
電場の大きさに等しい	
  

よって、コンデンサーの電極板の	
  

電場の大きさは極板面積を	
  

d

ここで、AB間の電位差を	
   とすると	
  V d

V = φ B( )−φ A( ) = E ⋅d

S

S

d

+Q

Q−

( )Aφ

( )Bφ



C = 1
4π k

S
d

コンデンサー〜ガウスの法則	


となる	


従って、電場	
  

真空中では「真空誘電率」	
  

金属板A	
  

E = 4π kQ
S

= V
d

4π kQ

で表される	
  

[	
  本	
  ]	
  

と表される	


−Q

+Q

金属板B	
  

に比例していることがわかります	
  

キャパシタンス	
  

は	
  

ε0

静電容量	
  

蓄えられる電気量	
  

この比例定数は	
  

d

となり、AB間の電位差を	
  

は	
  Q

E

Q = 1
4π k

S
d
⋅V

V

S

S

[	
  F	
  ]	
  



コンデンサー〜静電エネルギー	


極板間の電位差に逆らって電荷を運ぶのに仕事を要する	


充電途中で電位差が	
  

を充電するために要する仕事は	
  

と表される	
  

V

と表される	


Q
Δq B	
  

A	
  

になったとき	
  

式変形して	
  

微小電気量	
  

コンデンサーの極板に電荷が蓄えられる際	
  

O
これをグラフで表すと、図の様になります	
  

′V

′V

Q = 1
4π k

S
d
⋅V = CV

V = Q
C

Δq
ΔW = Δq ′V



コンデンサー〜静電エネルギー	


V

となる	
  

まで充電に要する全仕事は	


Q
Δq B	
  

A	
  

従って、コンデンサーの静電エネルギーは	
  

よって、電位差	
  

O

V

′V

U = 1
2
QV = 1

2
CV 2 = Q

2

2C

W = 1
2
QV



コンデンサー	


極板面積	
  

クーロン定数	
  

極板間距離	
  

真空誘電率	
  

電位差	
  

蓄えられる電気量	
  

静電エネルギー	
  

静電容量	
  

Q :
C :
V :
S :
d :
ε0 :
k :
U :

U = 1
2
QV = 1

2
CV 2 = Q

2

2C

Q = CV

C = 1
4π k

S
d
= ε0

S
d



= EdS
surface S
∫ = Q

4πε0r
2 ⋅4πr

2 = Q
ε0

クーロンの法則〜ガウスの法則	

離れたところでの電場の大きさは	
点電荷	
  

電場の球面	
  

E = k Q
r2

= Q
4πε0r

2

電場	


に対する積分はこれに球の表面積をかけたものでなくてはならない	
  

から距離	
  

であり、向きは点電荷から放射上になっている	
  

従って、	
  

Q

+Q

r

E単位面積当たり	
   本の電気力線を引く	
  

S

球の表面積	
  

全電気力線数	
  



クーロンの法則〜ガウスの法則	


となる	


電荷密度を	
   で表すと	
  

任意の閉曲面を考えた場合	
  

閉曲面	
  

面に対する法線単位ベクトル	
   を導入すると	
  

点電荷ではなく、任意の大きさの帯電体とし	
  

S

 
n

となるので、	


 

E

 
n

 
=


E ⋅ ndS

closed surface S
∫ = Q

ε0

全電気力線数	
  

Q = ρ dV
volume V
∫

ρ

 


E ⋅ ndS

S
∫ = 1

ε0
ρ dV

V
∫

積分形のガウスの法則	
  



クーロンの法則〜ガウスの法則	


上の任意の閉曲線	


単位接線ベクトル	
  
を考えたとき	
  

が成立する	
  

仕事量	
  

上の微小距離	


正電荷	
  

定義より	
  

途中で増えたり減ったりしない	
  

を導入すると	
  

から湧きだした電気力線は、負電荷に吸い込まれるまで	
  

電気力線	
  

Sここで、ある任意の閉曲面	
  

 

t

 


E ⋅

t ds

C
∫ = 0

電気力線の保存	
  

Q

：試験電荷が着目電荷から受ける力によって移動する道筋	
  

C

正電荷	
  
渦を作ることはない	
  

から湧きだした電気力線は、正電荷のまわりに電気力線の	
  Q

無渦条件	
  

C

 

t

 

E



 


E ⋅ ndS

S
∫ = 1

ε0
ρ dV

V
∫

ガウスの法則〜積分形	


内部電気量	


正電荷のまわりに電気力線の渦はできない	
  

比例定数は	
  

電気力線の総数	
  

 


E ⋅

t ds

C
∫ = 0

以上をまとめると	
  

を垂直に横切る電気力線の総数は内部電気量に依存し、	


である	
  

S任意の面	
  
1
ε0



ガウスの法則〜微小部分	


近似式(テーラー展開)	
  

斜線の２つの面に着目する	
  

それぞれの位置での電場の成分を	
  

と表すとする	
  
Nx

E電場	
  

図のような直方体を考える	
  

は	


の面に垂直な成分は	
  

x 方向に湧きだす電気力線の総数	
  

x

y

z Δx

Δy

Δz

x0, y0, z0( )

 
n  

nEx

Ex x0( ) Ex x0 + Δx( )

Nx = Ex x0 + Δx( )ΔyΔz − Ex x0( )ΔyΔz
= Ex x0 + Δx( )− Ex x0( ){ }ΔyΔz
= ∂Ex

∂x
Δx ⋅ ΔyΔz

Ex x0 + Δx( )

≈ Ex x0( ) + dEx x( )
dx

⎡
⎣⎢

⎤
⎦⎥x=x0

⋅ Δx



ガウスの法則〜微小部分	


から湧き出す電気力線の総数	
  

となる	
  

よって、この直方体から湧きだす電気力線の総数	
  

y, z方向については	
  同様に、	
  

微小体積	
  

N

x

y

z Δx

Δy

Δz

x0, y0, z0( )

 
n  

n

ΔV

Ny =
∂Ey

∂y
Δy ⋅ ΔxΔz

Nz =
∂Ez

∂z
Δz ⋅ ΔxΔy

N = Nx + Ny + Nz

= ∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
⎛
⎝⎜

⎞
⎠⎟
ΔxΔyΔz

は	


 
= ∇⋅


E( )ΔV

ΔV



ガウスの法則〜微小部分	


であるから、	
  

ここで、	
  

となり、２つの式を比較すると	
  

V に対しては	
  任意の体積	
  

 
N total = ∇⋅


E

V 
∫ dV

 
=

E ⋅ ndS

S
∫ = 1

ε0
ρ dV

V
∫全電気力線数	
  

 


E ⋅ n

S 
∫ dS = ∇⋅


E

V 
∫ dV

 
∇⋅

E

V 
∫ dV = 1

ε0

ρ
V 
∫ dV



ガウスの法則〜微小部分	


と表すことができる	
  

被積分関数を比較すると	
  

書きかえると	
  
 
∇⋅

E = ρ

ε0

 
div 

E = ρ

ε0



ガウスの法則〜微小部分	

無渦条件についても微小部分を考えると	
  

図のような微小な	
  

長方形1周の電場に	
  

x

y

z
Δx

Δy

x0, y0, z0( )

 

t

ついて考える	
  
 

t x0 + Δx, y0, z0( )

x0, y0 + Δy, z0( )
Ex x0, y0 + Δy, z0( )

Ex x0, y0, z0( )成分では	


A→B	
  +	
  B→C	
  +	
  C→D	
  +D→A	
  のうち	


x

A→B	
  +	
  C→D	
  のみを考えればよく	
  

B	
A	


C	

D	


Ex x0, y0, z0( ) ⋅ Δx − Ex x0, y0 + Δy, z0( ) ⋅ Δx
= Ex x0, y0, z0( )− Ex x0, y0 + Δy, z0( ){ } ⋅ Δx



ガウスの法則〜微小部分	


成分では	
y
B→C	
  +	
  D→A	
  のみを考えればよく	
  

= − ∂Ex

∂y
ΔyΔx

= −
Ex x0, y0 + Δy, z0( )− Ex x0, y0, z0( )

Δy
Δy

⎧
⎨
⎩

⎫
⎬
⎭
⋅Δx

Ey x0 + Δx, y0, z0( ) ⋅ Δy − Ey x0, y0, z0( ) ⋅ Δy

=
∂Ay

∂x
ΔxΔy

= Ey x0 + Δx, y0, z0( )− Ey x0, y0, z0( ){ } ⋅ Δy
=

Ey x0 + Δx, y0, z0( )− Ey x0, y0, z0( )
Δx

Δx
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
⋅Δy



ガウスの法則〜微小部分	


成分として表すことができる	
  の外積の	
  となり、	
  ∇

 
∇×

E( ) ⋅ ndS

S
∫

全ての成分について計算をし、任意の面積	


と書くことができる	
  

S
と電場ベクトル	


従って、	
  

従って、長方形1周分は	
  

 

∂Ey

∂x
− ∂Ex

∂y
⎛
⎝⎜

⎞
⎠⎟
ΔxΔy = ∇×


E( )z ΔxΔy = ∇×


E( )z ΔS

z 

E

に対して積分を行うと	


 


E ⋅

t( )ds

C
∫ = ∇×


E( ) ⋅ ndS

S
∫ = 0



ガウスの法則〜微小部分	

従って、	
  

 ∇×

E = 0

と表すことができる	
  

が得られる	
  

 rot 

E = 0

書きかえると	




ガウスの法則〜微分形	


微分形のガウスの法則	
  

 ∇×

E = 0

微分形の無渦条件	
  

 
rot 

E = 0( )

 
∇⋅

E = ρ

ε0  
div 

E = ρ

ε0

⎛
⎝⎜

⎞
⎠⎟

以上をまとめると	
  



ガウスの定理〜ストークスの定理	


 

A に対しても成立する	


積分系と微分形を関連付けた式	
  

ガウスの定理	
  (面積積分と体積積分の関係)	
  

は一般のベクトル	


 


E ⋅

t( )ds

C
∫ = ∇×


E( ) ⋅ ndS

S
∫

 


E ⋅ n

S 
∫ dS = ∇⋅


E

V 
∫ dV

 


A ⋅ n

S 
∫ dS = ∇⋅


A

V 
∫ dV

 


A ⋅

t( )ds

C
∫ = ∇×


A( ) ⋅ ndS

S
∫

ストークスの定理	
  (線積分と面積積分の関係)	
  



ラプラスの方程式	

微分形のガウスの法則	
  

 
∇⋅

E = ρ

ε0
に、電場と静電ポテンシャルの関係式	
  

を適用し、成分を考えると	
  
 

E = −∇φ

= ∂
∂x
, ∂
∂x
, ∂
∂x

⎛
⎝⎜

⎞
⎠⎟ ⋅ − ∂φ

∂x
,− ∂φ

∂y
,− ∂φ

∂z
⎛
⎝⎜

⎞
⎠⎟

 
∇⋅

E = ∂

∂x
, ∂
∂x
, ∂
∂x

⎛
⎝⎜

⎞
⎠⎟ ⋅ Ex ,Ey ,Ez( )

= ∂
∂x

− ∂φ
∂x

⎛
⎝⎜

⎞
⎠⎟ +

∂
∂y

− ∂φ
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂y

− ∂φ
∂y

⎛
⎝⎜

⎞
⎠⎟



ラプラスの方程式	


が得られる	
  

従って、	
  

を	
  ここで、演算子	
  

ポアソンの式 (静電ポテンシャルと電荷の関係式)	
  

従って、	
  

 
∇⋅

E = − ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
φ

∇2

と定義すると	
  

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

 ∇⋅

E = −∇2φ

∇2φ = − ρ
ε0

∇2：ラプラシアン	
  

特に、真空中に電荷が存在しない場合	
  

∇2φ = 0 ラプラスの方程式	
  



ガウスの法則〜例題	

図のように、半径	
Rの球の内部に単位体積あたり電気量 	
ρ(> 0)の荷電粒子が	


一様に分布しているとする。	


以下の問に答えよ。	
  

(1)	
  この球の中心から距離 	
r(≥ R)での電場の大きさ 	
 を求めよ。	
  E r( )
(2)	
  この球の中心から距離 	
r(≤ R)での電場の大きさ 	
 を求めよ。	
  E r( )
(3)	
  球の内外につくる静電場を距離	
rの関数としてグラフを書け。	
  

R
o

r
ρ



ガウスの法則〜線電荷	


x

である無限に長い直線上の電荷がある。	
  

A	
  

但し、線の太さは無視できるものとする。	
  

単位長さあたりの電気量(線密度)が	
  ρ
にある点Aでの電場の大きさを求めよ。	
  R

z

o

直線から距離	


R
ρ



ガウスの法則〜面電荷	


で一様に電荷が分布しているとする。	
この平面上に面密度	
  

この平面から距離	
  

a

σ

無限に広い平面がある。	
  

だけ離れた点での電場の大きさを求めよ。	
  
とする。	


a
但し、真空誘電率は	
  

σ

ε0



ガウスの法則〜円筒	


z

の無限に長い円筒の表面に単位長さ当たり	
  

一様に分布している。	
  

(1)	
  円筒の外側	
  

ρ図のような半径	
  a

a

(2)	
  円筒の内側	
  

の電荷量が	
  

xo

ρ

z(≥ a)

z(≤ a)

に生ずる電場を求めよ。	
  

に生ずる電場を求めよ。	
  



電流〜電荷の移動	


I = ΔQ
Δt

移動する電荷	


静電現象	
  

と定義される	
  

電気が流れる	
  

I
スカラー量	
  

電荷が停止している	
  

電流	
  

	
  [	
  C	
  ]	
  の電荷が通過したとき、	


[	
  A	
  ]	
  は	
  

ΔQ任意の断面を	
  

荷電粒子の流れ	
  

電荷の流れが一定	
   ：定常電流	
  

任意の導線断面を単位時間に通過する電気量	
  

[	
  s	
  ]	
  間の間に、	
  

I

=

Δt
その電流の大きさ	


電流の定義	
  

C
s

 = [ A ]



電流〜電束密度	


単位面積あたりの電流	


電束密度：	
  

を通過する電流の大きさは	
  

I1
電流	
  

導線内を通過する電流について	
  

とすると、電荷保存則により出入りの電流は等しく	


従って	
  

S1,S2
である	
  

：断面	
  

を通過する電流の大きさを	
  

 

i

断面	
  S

 I = iS cosθ = inS =

i ⋅

S

 

i

 
n

S1

I2
S2

θ
I
S

導線の断面	
  

と電流密度とのなす角	
  の単位法線ベクトル	
  

I1, I2
I1 = I2

in1 dS
S1
∫ + in2 dS

S2
∫ = 0

→ in dS
S
∫

θ S n



電流〜電束密度	

上で電流を面積分すると	


である	
  

任意の閉曲面	
  S
I

S

電流の保存則	
  

in dS
S
∫ = 0



直流と交流	


[	
  Hz	
  ]	
  

であり、電流は	
  

振動数	
  

日本の家庭用コンセント	
  

電流が時間的に変動しない：直流	
  

で変動している	
  

交流電源	

f

I0

I
R

は	
  

I t( ) = I0 sin 2π ft( )

電流が時間的に周期的に変動する：交流	
  

f = 50 or 60 I

1
f

t
−I0



電流〜オームの法則	


について	
  

V = IR

電位差	


電位差が必要	
  

電位差	
  

等電位面	
  

と	
  

が一定のとき	
  

電流が流れる為には	
  

は比例関係	
  

大きく	
   小さく	
  

比例定数を	
  

「抵抗」	
  

とすると	
  

電流の流れにくさの度合い	
  

E
φ A( )

I

R

φ B( )V = φ A( )−φ B( )
I電流の大きさ	


オームの法則	


V
比例定数	
  R

R→ I→
小さく	
   大きく	
  R→ I→

電位差	
   とする	
の電流が流れるときの電気抵抗を	
  の電極間を	
1V 1A 1Ω



電流〜抵抗	


断面積が広ければ広いほど、電流は流れやすい	
  

ρ = R S
l

「抵抗」は「電流の流れにくさの度合い」	


に反比例	
  導線の断面積	
  

抵抗線が長ければ長いほど、電流は流れにくい	
  

一様な物質で作られた抵抗線	
  

に比例	
  

：電気伝導率	
  

：電気抵抗率	
  

：抵抗線の物質に依存	
  

として	
  比例定数	
  

抵抗線の長さ	
  

ρ

σ = 1 ρ
ρ

R = ρ l
S
= 1
σ
l
S

l
S

ρ,σ

Ωm2

m
 = [ Ω⋅m ]



抵抗〜オームの法則	


なので	
  

微小部分を考える	


従って	
  

、断面積	
  

微小部分での電場の大きさは	
  

図のように導線中の	
  

電位差	
  

一般化されたオームの法則	
  

とする	
  

この微小導体の電気抵抗は	
  

の電流が流れているとき	
  微小導体に電束密度	
  

長さ	
  

i

Δφ

R = V
I
= Δφ
iΔS

= 1
σ

Δl
ΔS

Δl ΔS

 

i =σ


E

E

φ A( ) = φ

i

Δl

φ B( ) = φ + Δφ

ΔS

E = Δφ Δl

i = 1
ΔS

Δφ ⋅σ ΔS
Δl

⎛
⎝⎜

⎞
⎠⎟ =σE



オームの法則〜電子論	


BからAに向かって流れる	
  

単位時間に通過できる電子は	
  

抵抗線	


この電子の平均の速さを	
  

−	
  
を単位時間に通過する	
  

とおくと	


任意の断面	
  

は	
  

オームの法則の理論的な議論	
  

+	
  

なので	
  
とすると	


を通過する電子の個数	
  

v

抵抗線の電子密度を	
  

B	
  A	
  

電子は負の電荷	
  

単位時間に進む距離は	
  

図のような抵抗線ABを考える	
  

右図の色付きの部分にある電子となる	
  

N

V

S単位時間に	


n

v

S

S

N = nvS

電気量を求める	
  

v



オームの法則〜電子論	


= envS

原子や正イオンからの妨害：速度比例の抵抗力	
  

電子の運動をモデル化すると	
  

を通過する電気量の大きさ	
  単位時間に	
  
1個当たりの電気量を	
  

この2つがつり合って、一定の速さで運動するとする	
  

電場 ：	
  A→B	


i

B	
  A	
  

の大きさは	
  

電場からの力：	
  B→A	
  

とすると	
  

S

が成立する	


v

S

−e

i = −e ⋅N
即ち、電流	
  

kv
−e E

B	
  A	
  

−e ⋅E = kv

eE = kv



オームの法則〜電子論	


従って、抵抗	
  

となる	
  

よって電子の速さ	
  

なので、電場	
  

R

電流の式に代入すると	


電位差	
  
ここで、抵抗線の長さを	
  

式変形をして	
  

となり、オームの法則が成立している	
  

E の大きさは	
  

は	
  

とすると	
  

V

は	
  

v

l

E = V
l

と表されるので、	
  

e ⋅V
l
= kv

v = eV
kl

i = envS

= en eV
kl
S

= e
2nS
kl

V

V = k
e2n

l
S
⋅ i

R = k
e2n

l
S



ジュールの法則	


振動エネルギー	
  

電気抵抗	
  

オームの法則を使うと、電荷に対する仕事率は	
  

電荷は外部に対して次のような仕事をする	
  

のとき、電荷	
  

2点間	
  A	
  −	
  B	
  の電位差が	
  

がある回路では、電荷の持つエネルギーは抵抗により失われる	
  

電子が原子に衝突し	
  
原子の振動を激しくさせる	


q

[W	
  ]	
  

−

+

が点Aから点Bに移動すれば	
  

P = dW
dt

= dq
dt
V = IV = I 2R = V

2

R

V = φ A( )−φ B( )

失われたエネルギーは抵抗周辺の熱エネルギーとして散逸していく	
  

W = q φ A( )−φ B( ){ } = qV

ジュールの法則	
  

ジュール熱	
  

R

は毎秒	
  P = 1 W 1 J の仕事をする	
  



直流と交流〜例題	


(2)	
  このときの平均電流の大きさを求めよ。	
  

で表される電流がある。	
  

を求めよ。	
  に流したときの仕事率	
R

I
R

I t( ) = I0 sin 2π ft( )
電流が時間的に周期的に変動する電流	
  

(1)	
  抵抗	
   P

I t( )が	




起電力	


a	
  
↓	
  
b	
  
↓	
  
c	
  
↓	
  
d	
  
↓	
  
a	
  

起電力で仕事をされ高電位になる	
  

電源	
  
低電位の電荷を高電位に	
  
持ち上げる仕事をする装置	
  

図のような回路における電位を考える	
  

V
IR1

a	
  

電位	
  

I

IR2

R1+− R2

起電力	
  

b	
   c	
   d	
  
電荷は	


IR1 + IR2 =V

抵抗で仕事し電位が下がる	


抵抗の両端(	
  b-­‐d	
  )の電位差の和：	


抵抗で仕事し電位が下がる	




キルヒホッフの法則	


分岐点に	
  
流れこむ電流：正	
  
流れだす電流：負	
  

任意の閉回路	
  

例	
  

キルヒホッフの第1法則	
  (電流の保存則)	
  	
  

である	
  

回路の一部を形成する閉回路にそって1周する経路で、	
  
起電力の総和は抵抗による電圧降下の総和に等しい	


I2

閉回路で時計回りに回路の向きを取ると	
  

V1 +V2 = I1R1 + I2R2 + I3R3 + I4R4

回路分岐点での電流	
  

I1
回路の分岐点に流れ込む電流の代数和は	
  

例	


0 = Ii
i=1

4

∑

0
I3

I4

キルヒホッフの第2法則	
  (オームの法則)	
  	
  

I2
I1
I3

I4

R2

R1

R3R4

V1

V2



電流と電荷の連続方程式	


とすると	
  

閉曲面	
  閉曲面	
  

閉曲面	
  

この領域に含まれる電荷量は	
  

である	
  

キルヒホッフの第1法則	
  (電流の保存則)	
  	
  

従って、電荷量の時間変化は	
  

から出入りする電流密度を	
  

とする	


微小面積	
   を通過する電荷は	
  

 Δ

S

である	
  

の電荷密度	
  

ある領域に存在する電荷の総量が変化したならば	
  
その変化量はその領域を囲む面から電荷が出入りした量に他ならない	
  

で囲まれた領域	


Q = ρ dV
V∫

S
 

i
S

電荷の保存則	
  

V ρ

 

d
dt
Q = d

dt
ρ dV

V∫ = −

i ⋅d

S

S∫

S  Δ

S

 

i  Δ


S

 

i

 

i

ΔS  

i ⋅ Δ

S



電流と電荷の連続方程式	


が成り立つ	
  

ガウスの積分定理により	
  

電流と電荷の連続方程式	
  

この式は任意の閉曲面で成り立つので、空間の各点で	
  

であるから	
  

 


i ⋅d

S

S∫ = ∇⋅

i dV

V∫

 

d
dt

ρ dV
V∫ + ∇⋅


i dV

V∫ = d
dt

ρ +∇⋅

i⎛

⎝⎜
⎞
⎠⎟ dVV∫ = 0

 

d
dt

ρ +∇⋅

i = 0

となる	
  



回路の方程式〜RC回路	


式変形して	
  

図の様な回路の電位を考えると	
  

回路の方程式	
  

電池の起電力より：	
  

D	
  

C
−Q

I

R

+Q
V

C	
  

B	
  A	
  

オームの法則より：	
  

コンデンサーに電気量	
   が充電されている：	
  

従って、キルヒホッフの法則より	
  

即ち、	


VD→A =V

Q
VA→B = −RI

VB→C = −Q
C

VD→A +VA→B +VB→C = 0

V − RI − Q
C

= 0

RI + Q
C

=V



回路の方程式〜RC回路	


電気量保存の式	
  

ここで、コンデンサーについて着目してみる	
  

となる	
  

コンデンサーでの電気量の充電は	
  

D	
  

C
−Q

I

R

+Q
V

C	
  

B	
  A	
  

コンデンサーに流れ込んだ	
  
電気量がそのまま蓄えられる	
  

これを回路方程式に代入すると	
  

に関する微分方程式	
  

で微分すると	
  

となる	


Q

Q t( ) = I ′t( )d ′t
0

t

∫ +Q 0( )

R dQ
dt

+ Q
C

=V

この両辺を	
  t

I t( ) = dQ t( )
dt



回路の方程式〜RC回路	


(	
  	
  	
  	
  	
  	
  は定数)	
  

微分方程式の一般解は	
  

と表せる	
  

であるから	
  

CV 1− e−1( )
≈ 0.63CV

CV

t
O RC

Q t( )

よって、	
  

：回路の時定数	
  

でコンデンサーは充電されていなかったとすると	
  

となる	


RC

Q t( ) = CV − Ae
− t
RC

初期条件を	
  t = 0

A

Q t( ) = CV 1− e
− t
RC

⎛
⎝⎜

⎞
⎠⎟

Q 0( ) = CV − Ae
− 0
RC = CV − Ae0 = 0

A = CV



RI 2 + d
dt

1
2
Q2

C
⎛
⎝⎜

⎞
⎠⎟
= dQ
dt
V

回路の方程式〜エネルギー保存則	


回路の方程式	
  

抵抗で単位時間に	
  
消費されるジュール熱	
  

の両辺に電流	
  

コンデンサーの静電エネルギー	
  

をかけると	
I = dQ
dt

単位時間に	
  
電池がする仕事	
  
　　「仕事率」	
  

RI + Q
C

=V

RI 2 + Q
C
dQ
dt

= dQ
dt
V

コンデンサーの	
  
エネルギー	
  

U = 1
2
Q2

C



ガウスの法則〜ポイント	


[	
  本	
  ]	
  ある	
  

全電気力線数	
  

[	
  本	
  ]	
  とする	
  

全面積	
  

+Q

ガウスの法則は	
  

ガウスの約束事	
  

単位面積当たりの本数	


= E ⋅S

例えば、半径	
 Q = ρ dV =
V∫ ρ ⋅V

単位面積あたりの電気力線の本数を	
  E

= 1
4πε0

Q
r2

⋅S

r の球を閉曲面としたら	
  

= 1
4πε0

Q
r2

⋅4πr2 = Q
ε0

 
En =


E ⋅ n =


E n cosθ

即ち、	

Q
ε0

の電荷から出てくる全電気力線数は	
+Q

E ⋅S = Q
ε0

と書ける	
  

注意点	
  

・電荷	
  (電気量)	
  は点電荷でない場合は	
  

体積密度	
  :	
  

・　　	
  は電場の大きさだが、面に垂直な成分	
  

面密度	
  :	
  

線密度	
  :	
  

全電気力線数	
  

Q = σ dS =
S∫ σ ⋅S

Q = ρ dl =
l∫ σ ⋅ l

 


E ⋅ ndS =

Surface
∫ En ⋅S

 
=


E ⋅ ndS =

Surface
∫

1
ε0

ρ dV
Vomule
∫

En ⋅S = 1
ε0

× 全電気量	
  

×

全電気力線数	
  

E

ρ

σ

ρ

一般化	
  

 
n  


En

 

Eθ

電場が求められる	
  



導線を流れる電流〜例題	


(2)	
  導線の半径	
  

[	
  mm	
  ]	
  の断面をもつ導線がある。	
  

この導線に	
  

[	
  mm	
  ]	
  の内側で流れる電流の大きさ	


i

I = 1

半径	
  

(1)  電流密度の大きさ	
  

I0

但し、電流密度は一様として考えてよいものとする。	


1
1 [	
  A	
  ]	
  の電流が流れている。	
  

以下の問に答えよ。	


を求めよ。	
  

0.5

[	
  A	
  ]	
  

を求めよ。	
I0



合成抵抗〜例題	


であることを示せ。	
  

R
抵抗	
  

(1)	
  3つの抵抗が並列につながれたときの合成抵抗	
  

がある。	
R1,R2,R3

1
R
= 1
R1

+ 1
R2

+ 1
R3

が	
  

R(2)	
  3つの抵抗が直列につながれたときの合成抵抗	
   が	
  

R = R1 + R2 + R3
であることを示せ。	
  

R1
R2
R3

R1 R2 R3



磁石と磁場	

鉄を引きつける	
  磁石：	
  

北を指す磁極を	


最も強い部分を磁極	
  

磁極の間に働く力	
  

S 極	
  (負極)	
  
N極	
  (正極)	
  

南を指す磁極	
  

N S

磁極	
  N

S

磁針	
  

磁荷	
  磁極の強さ	
  

F Fr

F = ′k Qmqm
r2

Qm qm
−Qm

同符号の場合：斥力（反発力）	
  
異符号の場合：引力	




磁石と磁場	


2	
  つに分けると必ず	
  

S極に分かれる	
  N極と	
  

N S電気の場合と異なり	
  

これまで単磁極は発見されていない	
  



電流と磁場	


磁石や電流によって空間の状態が変化している場	
  

S

磁場	
  

磁力線の向きは磁場の向き	
  

電流が流れている導線の近くに方位磁針を置くと針が振れる	


極に向かう	
  N

例	
  

極から出て	
  

I

磁力線	
  

N S

磁石のまわりの磁力線は、	
  

極から出入りする磁力線の本数は磁極の強さに比例する	
  

単位面積当たりの磁力線の本数は、その点での磁場の強さに比例する	
  

N



地球の磁場	


南極	
  

S

磁針が南北を向く	
  

約	
  

北を指す磁極を	


極に向かう	
  N

[	
  T	
  ]	
  

極から出て	
  

東京付近の地球の磁場	
  
N

S

地球は大きな磁石	
  

北極	
  S 極	
  
N極	
  

南を指す磁極	
  

4.6 ×10−5 N

磁力線	




磁場	


２つの磁極を	
  

N

磁場の強さの定義	
  

極が受ける力で磁場の強さを定義する	
  

[	
  m	
  ]	
  話した場合、及ぼし合う力が	


[	
  N	
  ]	
  

1

のとき	
  

[	
  N	
  /	
  Wb	
  ]	
  

[	
  Wb	
  ]	
  (ウェーバ)	
  とする	
  

磁場の強さが	
   の点に置かれた磁荷	
   [	
  Wb	
  ]	
  が受ける力	
  

6.33×104

1

F = mH

H m F は	
  

と表せる	
  

0B Hµ=

磁束密度　(磁場)	
  



アンペールの法則	


電流が流れた	
  

電荷が空間中を移動したとき磁場が発生する	
  

極が受ける力で磁場の強さを定義する	
  

[	
  m	
  ]	
  話した場合、及ぼし合う力が	


[	
  N	
  ]	
  

のとき	
  

[	
  N	
  /	
  Wb	
  ]	
  

[	
  Wb	
  ]	
  (ウェーバ)	
  とする	
  

磁場の強さが	
  の点に置かれた磁荷	
   [	
  Wb	
  ]	
  が受ける力	
  

   
!
B ⋅d!s = µ0

!
i ⋅d
!
S

S∫C"∫

は	
  
面を横切る	
  
電流の合計	
  

0Iµ=

  
!
B   d
!s

  
!
B
  d
!s

  d
!
S  

!
i

線上を1周	
  
線積分する	
  



電流がつくる磁場	


つくる磁場の強さ	
  
I

直線電流がつくる磁場　	
  

十分に長い直線導線が流れる電流	
  

磁場の向きは「右ねじの法則」に従う	


に比例	
  

[	
  A	
  /	
  m	
  ]	
  

は	
  

電流の大きさ	
  

導線からの距離	
  

H = I
2πr

H

r

が	
  

H

r

I
I

に反比例	
  

磁力線は電流を中心とする同心円	
  

   
!
B ⋅d!s = µ0

!
i ⋅d
!
S

S∫C"∫

2B rπ⋅ 0Iµ

線上を1周	
  
線積分する	
  



電流がつくる磁場	


中心部つくる磁場の強さ	
  
I

円形電流がつくる磁場	
  

円形電流	
  

磁場の向きは「右ねじの法則」に従う	


に比例	
  

[	
  A	
  /	
  m	
  ]	
  

は	
  

電流の大きさ	
  

半径	
  

H = I
2r

H

r

が	
  

H

r
II

に反比例	
  

   
B =

µ0I
4πC∫

d!s × !r
r3

ビオ-­‐	
  サバールの法則	




電流がつくる磁場	


つくる磁場の強さ	
  
I

ソレノイドコイルがつくる磁場　	
  

ソレノイドコイルに流れる電流	
  

磁場の向きは「右ねじの法則」に従う	


に比例	
  

[	
  A	
  /	
  m	
  ]	
  

は	
  

電流の大きさ	
  

単位長さ当たりの巻き数：	
  

H = nI

H

n

が	
  

H

I

I

内部の中心付近に一様な磁場ができる	
  



電流が磁場から受ける力	


この場合、導線は左向きの力を受ける	
  

U字型磁石	
  

磁力線のひずみによるもの	
  

フレミング左手の法則	
  
F

磁石の間に導線をはさみ、	
  
電流を流すと導線は力を受ける	
  

I

S

N

N

S S

N

電流	
  

磁場	
  

力	
  



電流が磁場から受ける力	


に比例した力が働く	
  

l
一様な磁場中	
  (磁場の強さ　　	
  )	
  

と表すことができる	
  

磁場の強さを表す量「磁束密度	


は	
  

[	
  T	
  ]	
  (テスラ)	
  

すると、電流が受ける力	
  

を流すと	
  

比例定数	
  

F = µ0HIl

H

H , I ,l
の導線を置き、電流	
  

FI

I磁場の向きと垂直に長さ	
  

：真空透磁率	
  

1

B

F B = F
Il

µ0

」を導入する	


B = µ0H

F = IBl
磁束密度は	
  1 [	
  m	
  ]当たりに	
  [	
  A	
  ]、	
  

働く力とみることもできる	
  

H



ローレンツ力	


電荷を帯びている粒子が、電場	
  

q静止した電荷	
  

の中を速度	
  

に働く力	
  

ローレンツ力	
  

は	
  

で運動するときに	
  

磁場は動いている電荷に力を及ぼす空間	
  

 

FB

x

と表せる	
  
 

FE = q


E

、磁束密度	
  

 

F = q


E + v ×


B( )

と表される	
  

は	
   

FE

電場は静止電荷に力を及ぼす空間	
  

 

E  

v 

B

受ける力	
   

F

 

FB = qvBsinθ

y

z

θ

 
v

 

Bq



電磁気学の講義を終えて	


・導体	
  /	
  絶縁体	
  
・電気双極子	
  
・ビオ・サバールの法則	
  
・アンペールの法則	
  
・電磁誘導	
  
・電磁波	
  

・電荷とクーロンの法則	
  
・電場	
  /	
  電位	
  
・電気力線	
  
・静電エネルギー	
  
・ガウスの法則	
  
・コンデンサー	
  
・オームの法則	
  
・キルヒホッフの法則	
  
・回路方程式	
  
・磁場	
  
・ローレンツ力	
  

取り扱った内容	
   取り扱っていない内容	
  


