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物理数学	


•  ベクトル	
  
•  ベクトルの内積・外積	
  
•  偏微分・全微分	
  
•  演算子	
  
•  ベクトル解析	
  (	
  grad	
  /	
  div	
  /	
  rot	
  )	




ベクトル	

位置	


観測者	


物体	


３次元の運動を考えるときは	
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単位ベクトル	


r = xe1 + y
e2 + z

e3

| r |= x2 + y2 + z2

この座標系は、観測者	
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zに対する（	
 を始点とする）	
O O
の位置ベクトル	
P

の関数として追跡する	
このベクトルが時刻	
t

に対する	
O
相対座標系となる	
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ベクトル〜単位ベクトル	

単位ベクトル	
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r = xe1 + y
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なので	
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ベクトル〜速度	
  /	
  加速度	

速度、加速度を３次元で表すと	


速度、加速度の定義もベクトルで考えると	


となる	


と表すことができる	


 

v = dx
dt
e1 +

dy
dt
e2 +

dz
dt
e3

 

a = d
2x
dt 2
e1 +

d 2y
dt 2
e2 +

d 2z
dt 2
e3

 

v = lim
Δt→0

r t + Δt( )− r t( )
Δt

= d
r
dt

 

a = lim
Δt→0

v t + Δt( )− v t( )
Δt

= d
v
dt

変位ベクトルの時間変化率	


速度ベクトルの時間変化率	




ベクトル〜内積	


これを３次元の直交座標系を考える	


とし、それぞれの単位ベクトルを	
 とすると	


ベクトルの成分を	



A ⋅

B

ベクトルの内積	
 
B


A

 

A ⋅

B =

A

B cosθ

θ

Bcosθ

 

i ,

j ,

k

 

A = Ax ,Ay ,Az( )  


B = Bx ,By ,Bz( )



ベクトル〜内積	


となるので、ベクトルの内積は	


ベクトルはそれぞれ	


 

A = Ax


i + Ay


j + Az


k

 

B = Bx


i + By


j + Bz


k

 


A ⋅

B = Ax


i + Ay


j + Az


k( ) ⋅ Bx


i + By


j + Bz


k( )

Ax


i ⋅Bx


i + Ax


i ⋅By


j + Ax


i ⋅Bz

k +

Ay


j ⋅Bx


i + Ay


j ⋅By


j + Ay


j ⋅Bz

k +

Az

k ⋅Bx


i + Az


k ⋅By


j + Az


k ⋅Bz


k



ベクトル〜内積	


が成立するので	
 に対し	


任意の２元	
ここで単位ベクトルに対して	


 A = A1,A2,An( )

 

A ⋅

B = AxBx + AyBy + AzBz

 

i ⋅

i =

j ⋅

j =

k ⋅

k = 1

 

i ⋅

j =

j ⋅

k =

k ⋅

i = 0

A ⋅B = AiBi
i=1

n

∑

 B = B1,B2,Bn( )

となる	


それぞれの成分どうしをかけたものの和	




ベクトル〜外積	


平行四辺形の面積	


ベクトルの外積	


右ねじの進む向き	



B


A

θ A B sinθ

 

C =


A

B sinθ ⋅ e

 

A ×

B

 

A ×

B =

A

B sinθ ⋅ e

 
e

 

A ×

B = −


B ×

A

内積のときと同様に成分で考えてみると	


 

A = Ax


i + Ay


j + Az


k

 

B = Bx


i + By


j + Bz


k



ベクトル〜外積	

となるので、ベクトルの外積は	


 


A ×

B = Ax


i + Ay


j + Az


k( )× Bx


i + By


j + Bz


k( )

Ax


i × Bx


i + Ax


i × By


j + Ax


i × Bz


k +

Ay


j × Bx


i + Ay


j × By


j + Ay


j × Bz


k +

Az

k × Bx


i + Az


k × By


j + Az


k × Bz


k

が成立するので	


ここで単位ベクトルに対して	


 

i ×

i =

j ×

j =

k ×

k = 0

 

i ×

j =

k ,

j ×

k =

i ,

k ×

i =

j



ベクトル〜外積	

となるので、ベクトルの外積は	


 


A ×

B

= AyBz − AzBy( )i + AzBx − AxBz( ) j + AxBy − AyBz( ) k

となる	


 


A ×

B =

AyBz − AzBy

AzBx − AxBz
AxBy − AyBz
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微分〜偏微分	


微分と偏微分の違い	


例	


独立変数の数	


微分：	
  

y x( ) = 2x +1

独立変数	
従属変数	


の関数	
  y は	
   x

に対する変化率	
  y の	
   x

dy
dx

= d
dx

2x +1( ) = 2



微分〜偏微分	


の２つ	
独立変数は	


この考え方を使うと	
  
多変数関数でも変化率	
  
が定義できる	
  

関数	
   y x,t( ) の場合	
  

∂y
∂x

= lim
Δx→0

y x + Δx,t( )− y x,t( )
Δx

偏導関数	


t
x,t

を定数と考えて計算する	
  に対する変化率	
  y の	
   x

で偏微分する	
  y を	
   x

∂y
∂t

= lim
Δt→0

y x,t + Δt,( )− y x,t( )
Δt



偏微分	


の場合	
  

関数	
   y x,t( )

∂y
∂x

= ∂
∂x

3x2 + 2x + 3t 2 + x2t 3( ) = 6x + 2 + 2t 3x

例	


y x,t( ) = 3x2 + 2x + 3t 2 + x2t 3

∂y
∂t

= ∂
∂t
3x2 + 2x + 3t 2 + x2t 3( ) = 6t + 3x2t 2



全微分	


の変化	


が成立する	
  

関数	
   y x,t( ) においての微小変化を考える	
  

となったとき	


y

全微分	
  

に対する変化率	
  y の	
   x

x→ x + dx
t→ t + dt

y→ y + dy と変化したとする	


dy = ∂y
∂x
dx + ∂y

∂t
dt

このとき	
  

に対する変化率	
  y の	
   t

∂y
∂x
dx

∂y
∂t
dt

変化するときの	
  : xが	
  dx

の変化	
y変化するときの	
  : t が	
  dt



演算子	


演算子	


例	


f x, y( ) = 2x2 + 3y

演算子のあとの量についてその演算を行え	


あとからくる量を「	

d
dx

で微分せよ」	
  

微分演算子	
  

x

関数	
   f x, y( ) を考えると	
  

d
dx

f (x, y) = d
dx

2x2 + 3y( ) = 4x



演算子	

例	


f x, y( ) = 2x2 + 3y

∂
∂x

+ ∂
∂y

微分演算子	
  

関数	
   f x, y( ) を考えると	
  

∂
∂x

+ ∂
∂y

⎛
⎝⎜

⎞
⎠⎟
f (x, y) = ∂

∂x
f (x, y)+ ∂

∂y
f (x, y)

= ∂
∂x

2x2 + 3y( ) + ∂
∂y
(2x2 + 3y)

= 4x + 3



ベクトル微分演算子	

ここで、演算子	


 

∂
∂x

i + ∂

∂y

j + ∂

∂z

k

を考える	
  

ナブラ	
  

この演算子を「ベクトル微分演算子」と呼ぶ	
   物理では非常に重要	


 
∇ = ∂

∂x

i + ∂

∂y

j + ∂

∂z

k

ベクトル微分演算子	


は単位ベクトル	
 

i ,

j ,

k



ベクトル〜grad	


ここで、演算子	
 を作用させると	
  

の勾配」と呼ぶ	
  この	
  

gradient	
  (グラディエント)	
  

は「	


は単位ベクトル	
 

i ,

j ,

k

関数	
   f x, y, z( )を考える	
  

∇

grad f = ∇f

 
= ∂

∂x

i + ∂

∂y

j + ∂

∂z

k

⎛
⎝⎜

⎞
⎠⎟
f (x, y, z)

 
= ∂ f
∂x

i + ∂ f

∂y

j + ∂ f

∂z

k

grad f f



ベクトル〜grad	

この演算子を作用させた意味について考えてみる	


3次元関数	
   f x, y, z( ) において	
  

 
df = ∂ f

∂x

i + ∂ f

∂y

j + ∂ f

∂z

k

⎛
⎝⎜

⎞
⎠⎟
⋅ dx

i + dy


j + dz


k( )

を考えると	
  この関数に対する全微分	
   df

 
df = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz

これを内積を用いて書きかえると	


 

A ⋅

B = AxBx + AyBy + AzBz

 

i ⋅

i =

j ⋅

j =

k ⋅

k = 1

 

i ⋅

j =

j ⋅

k =

k ⋅

i = 0

 = grad f ⋅dr

 = ∇f ⋅dr
となる	




ベクトル〜grad	


の勾配	
  

よって	
  

ここで	
 方向の単位ベクトルを	
  

f

 

t

と表すと	


 d
r  


t とおき	
  

 df = ∇f ⋅

tds

 d
r =

t ⋅ds

 

= ∇f ⋅

t cosθ ⋅ds

= ∇f ⋅dscosθ

df
ds

= ∇f ⋅cosθ

となる	
  
df
ds

= ∇f ⋅cosθ θ=0⎯ →⎯ df
ds

= ∇f

x

df
ds

z

θ

y

f x, y, z( )

∇f

O

 
r

 

t

 d
r

ds

電場と電位	
  
万有引力と位置エネルギー	
  



ベクトル〜div	


ここで、演算子	
 を作用させる	
  

の発散」と呼ぶ	
  この	
  

divergence	
  (ダイバージェンス)	
  

は「ベクトル	


は単位ベクトル	
 

i ,

j ,

k

ベクトル	
  
 

A = Ax


i + Ay


j + Az


k( )を考える	
  

∇

 div 

A = ∇⋅


A

 
= ∂

∂x

i + ∂

∂y

j + ∂

∂z

k

⎛
⎝⎜

⎞
⎠⎟
⋅ Ax


i + Ay


j + Az


k( )

= ∂Ax

∂x
+
∂Ay

∂y
+
∂Az
∂z

 div 

A  


A

つまり、内積を考えると	
  



ベクトル〜div	


流れ出る量	


流れ込む量	
  

Ax x0 + Δx( ) ⋅ ΔyΔz

z

x

 

A x, y, z( )

x0

y

3次元空間にベクトル場	
   を考える	
  

ベクトル場	
  
電場や磁場のように向きと大きさをもつ場	
  

このベクトル場のなかに微小直方体を考え、	
  
この微小直方体内の「流れ」を考える	
  

斜線部の２面に着目すると	
  

 

A x, y, z( )

Ax x0( ) Ax x0 + Δx( )

x

y

z
x0 + Δx

Δz

y0 + Δy

y0 Ax x0( ) ⋅ ΔyΔz



ベクトル〜div	


Nx = Ax x0 + Δx( )ΔyΔz − Ax x0( )ΔyΔz

よって、この微小直方体の	
   方向に対して	
  

流れ出る量	
   は	
  

同様に	
  

x
Nx

= Ax x0 + Δx( )− Ax x0( ){ }ΔyΔz
= ∂Ax

∂x
ΔxΔyΔz

y, z 方向に対しては	
  

Ny =
∂Ay

∂y
ΔxΔyΔz

Nz =
∂Az
∂z

ΔxΔyΔz



ベクトル〜div	


微小直方体から出る電気力線総数	
  
を示している	
  

よって、この微小直方体から流れ出る量	
  

従って、	
  

単位体積当たりの「流れ出る量」	
  

は	
  

ベクトル	
  

N

= ∂Ax

∂x
+
∂Ay

∂y
+
∂Az
∂z

⎛
⎝⎜

⎞
⎠⎟
ΔxΔyΔz

 

A を電場と考えたとき	
  

N = Nx + Ny + Nz

 
= ∂

∂x

i + ∂

∂y

j + ∂

∂z

k

⎛
⎝⎜

⎞
⎠⎟
⋅ Ax


i + Ay


j + Az


k( )ΔxΔyΔz

 = ∇⋅

AΔxΔyΔz

 
∇⋅

A = N

ΔxΔyΔz

の発散」	
  は「ベクトル	
 div 

A  


A



div〜ガウスの定理	


を横切る	
  

任意の体積	
  

とすると	
  

ΔV

微小直方体の体積を	
  

とおくと	
  

一方、	
  
この微小直方体を囲う任意の面	
  

流れ出る線は必ず	
  

を	
  

S

V

S
横切る流量は、面の法線ベクトルを	
  

ΔV = ΔxΔyΔz

 N = ∇⋅

AΔxΔyΔz

 
= ∇⋅


A( )ΔV

にたいして積分を行うと	
  

 
N total = ∇⋅


A

V
∫ dV

 
N total =


A ⋅ n

S
∫ dS

 
n

S



div〜ガウスの定理	


ΔV

これらの式は等しいので	
  

が成立する	
   ガウスの定理	
   S

面積積分と体積積分の関係を示す	
  

 


A ⋅ n

S
∫ dS = ∇⋅


A

V
∫ dV



ベクトル〜rot	


ここで、演算子	
 を作用させる	
  

の回転」と呼ぶ	
  この	
  

rota5on	
  (ローテーション)	
  

は「ベクトル	


は単位ベクトル	
 

i ,

j ,

k

ベクトル	
  
 

A = Ax


i + Ay


j + Az


k( )を考える	
  

∇

 rot 

A = ∇×


A

 
= ∂

∂x

i + ∂

∂y

j + ∂

∂z

k

⎛
⎝⎜

⎞
⎠⎟
× Ax


i + Ay


j + Az


k( )

 
=

∂Az
∂y

−
∂Ay

∂z
⎛
⎝⎜

⎞
⎠⎟

i + ∂Ax

∂z
−
∂Az
∂x

⎛
⎝⎜

⎞
⎠⎟

j +

∂Ay

∂x
− ∂Ax

∂y
⎛
⎝⎜

⎞
⎠⎟

k

 rot 

A  


A

つまり、外積を考えると	
  



ベクトル〜rot	


長方形1周について	
  

成分では	


A→B	
  +	
  B→C	
  +	
  C→D	
  +D→A	
  のうち	


3次元ベクトル空間内において、	
  
図のような長方形ABCDを考える	


x

Aの和	
  

となる	
  

x0
x

y0 + Δy

y0
Ax x0, y0, z0( )

y

z
x0 + Δx

Ax x0, y0 + Δy, z0( )

を考えると	
  
B	
A	


C	
D	


A→B	
  +	
  C→D	
  のみを考えればよく	
  

Ax x0, y0, z0( ) ⋅ Δx − Ax x0, y0 + Δy, z0( ) ⋅ Δx
= Ax x0, y0, z0( )− Ax x0, y0 + Δy, z0( ){ } ⋅ Δx

= − ∂Ax

∂y
ΔyΔx

= −
Ax x0, y0 + Δy, z0( )− Ax x0, y0, z0( )

Δy
Δy

⎧
⎨
⎩

⎫
⎬
⎭
⋅Δx



ベクトル〜rot	

成分では	


A→B	
  +	
  B→C	
  +	
  C→D	
  +D→A	
  のうち	


同様に、	
  y

となる	
  

B→C	
  +	
  D→A	
  のみを考えればよく	
  

Ay x0 + Δx, y0, z0( ) ⋅ Δy − Ay x0, y0, z0( ) ⋅ Δy

=
∂Ay

∂x
ΔxΔy

= Ay x0 + Δx, y0, z0( )− Ay x0, y0, z0( ){ } ⋅ Δy
=

Ay x0 + Δx, y0, z0( )− Ay x0, y0, z0( )
Δx

Δx
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
⋅Δy



ベクトル〜rot	

従って、	
  

成分を表していることになる	


成分 ：	
  

の	
  ∇× A

磁場や磁力線で重要	
  

となり、	
  

となるので	
  

∂Ay

∂x
− ∂Ax

∂y
⎛
⎝⎜

⎞
⎠⎟
ΔxΔy = ∇× A( )z ΔxΔy

同様に計算すると	
  

z

∂Az
∂y

−
∂Ay

∂z
∂Ax

∂z
−
∂Az
∂x

成分 ：	
  x y

 
∇× A =

∂Az
∂y

−
∂Ay

∂z
⎛
⎝⎜

⎞
⎠⎟

i + ∂Ax

∂z
−
∂Az
∂x

⎛
⎝⎜

⎞
⎠⎟

j +

∂Ay

∂x
− ∂Ax

∂y
⎛
⎝⎜

⎞
⎠⎟

k



rot〜ストークスの定理	


面に垂直な単位ベクトルを	
  

と等しくなる	
  

微小な面を想定している面全体に拡張して考える	
  

よって、外周に沿った単位ベクトルを	
  

と表せる	
  

図からもわかるように、相殺される部分を	
  
考慮すると、これは面全体の外周積分となる	
  

C 
n

同じ色同士は相殺される	
  

とすると	
  

  
∇×

A( ) ⋅ n

S
∫ dS

 


A ⋅

t

C
∫ ds

  


A ⋅

t

C
∫ ds = ∇×


A

S
∫

⎛

⎝⎜
⎞

⎠⎟
ndS

とすると	
   

t

従って	
  

が成立する	
  

ストークスの定理	
  

線積分と面積分の関係を表す	
  


